γ-ray Emission from the Brightest Cluster Galaxy NGC 1275?

A Multiwavelength Perspective

Supervisor: Prof Jim Hinton

Collaborators: Dr. Alastair Edge

Mike Hogan

An Outline...

- A Case Study of a Galaxy Cluster
 - NGC 1275 a non-thermal picture
 - Emission scenarios and scales
- Some words about Fermi
 - The analysis procedure
- > The work
 - Temporal and spectral analysis
 - Preliminary results and interpretation

Galaxy Clusters

- Largest gravitationallybound structures in the Universe
- ➤ Bremsstrahlung X-rays reveal hot intra-cluster gas (10⁷ 10⁸ K)
- Presence of dark matter inferred
- \succ Cooling flows where $t_{
 m cool} < t_{
 m age}$

Galaxy Clusters - BCGs

- In *cooling-core* clusters suppression of the cooling flow is observed, necessitating some reheating mechanism...
- Feedback from the central Brightest Cluster Galaxy (BCG) suggested.
- Gamma rays from AGNdriven processes

Prototypical case:

Kate Dutson
12th July 2013

NGC 1275 – A Non-thermal picture

- S-shaped radio lobes and relic 'ghost' bubbles suggest misaligned blazar of precessing jets blowing bubbles of relativistic plasma into the ICM
- Anticorrelation of radio (pink) and X-ray (blue) emission features

γ-rays from Clusters and BCGs?

- Gamma radiation is a tracer of Cosmic-ray acceleration.
- Clusters of galaxies are reservoirs of non-thermal particles.
- > HE Emission via inverse Compton scattering:

γ-rays from Clusters and BCGs?

- Gamma radiation is a tracer of Cosmic-ray acceleration.
- Clusters of galaxies are reservoirs of non-thermal particles.
- > HE Emission via inelastic proton-proton collisions:

$$egin{aligned} p+p &
ightarrow p+p+ p+\pi^0 & \pi^0
ightarrow \gamma \gamma \ p+p &
ightarrow p+n+\pi^+ \ \pi^+
ightarrow \mu^+ +
u_\mu
ightarrow e^+ +
u_e +
u_\mu + \overline{
u}_\mu \ \pi^-
ightarrow \mu^- + \overline{
u}_\mu
ightarrow e^- + \overline{
u}_e +
u_\mu + \overline{
u}_\mu \end{aligned}$$

Motivation - NGC 1275 in the Radio

Motivation – NGC 1275 in γ rays

University of Leicester

-5-

Kate Dutson

12th July 2013

The Fermi Gamma-ray Space Telescope

- Launched in 2008
- Carries the Large Area Telescope (LAT), which is sensitive to γ-rays of energy
 20 MeV 300 GeV
- Surveys whole sky every~3 hours (two orbits)

Fermi Data Analysis

Fermi Science tools provided by the FSSC...

Kate Dutson 12th July 2013

Monthly bins:

2-week bins:

> 4-day bins:

12th July 2013

daily bins:

12th July 2013

Light Curves – SCUBA-2

Finding Flares...

12_{th} July 2013

Hardness Ratio-Flux Correlation

In Summary

- Historical motivation for observations of NGC 1275
- Highly variable source at radio wavelengths and in γ rays
- Correlation between overall flux and hardness ratio?
- Hints of a radio-gamma connection to be further investigated!

Diagnostic Plots

12th July 2013

Diagnostic Plots

Kate Dutson12th July 2013