

Max Planck Institute for Physics

European Week of Astronomy and Space Science THE GAMMA-RAY SKY IN THE ERA OF FERMI AND CHERENKOV TELESCOPES 11 and 12 July 2013, Turku, Finland

TeV Blazar Mrk 421 during Flaring Activity in March 2010

ShangYu Sun and David Paneque

A. Boller, A. Pichel, L. Fortson, N. Galante, and Nijil Mankuzhiyil On behalf of the Fermi, MAGIC, VERITAS, Whipple collaborations and the participants/groups of the MW campaign on Mrk421 in 2010, which include GASP-WEBT, F-GAMMA and many others

11/07/2013

Markarian 421 (Mrk 421)

•a strong High-Synchrotron-Peaked (HSP) BL Lac object
•Very High Energy (VHE) gamma-ray flux ~0.5 Crab
•It can be detected at 5+ sigmas in order few minutes with MAGIC and VERITAS

•z = 0.03
•low Extragalactic Background Light absorption
•more intrinsic spectrum

Excellent laboratory for studying High Energy blazar emission

2010 Multi-wavelength(MW) Instruments/Bands

Wave band	instrument	Wave band	instrument
VHE Gamma Rays	MAGIC	Optical/v band	New Mexico Skies
VHE Gamma Rays	VERITAS	Optical/v band	ROVOR
VHE Gamma Rays	Whipple	Optical/v band	Bradford Robotic Telescope
HE Gamma Rays	Fermi	Optical/r band	New Mexico Skies
X-rays	ΒΧΤΕ/Ρ <u>Γ</u> Δ	Optical/r band	ROVOR
		Optical/r band	Bradford Robotic Telescope
X-rays	SWIFT/BAT	Optical/r band	GLAST-AGILE Support Program
X-rays	SWIFT/XRT	Optical/r band	Goddard Robotic Telescope
X-rays	RXTE/ASM	Optical/r band	Perkins
X-rays	MAXI	Optical/r band	Steward
UV/UVW2	SWIFT/UVOT	Optical/r band	Crimean
UV/UVM2	SWIFT/UVOT	Optical/r band	St.Petersburg
UV/UVW1	SWIFT/UVOT	Optical/I band	ROVOR
Optical/b band	ROVOR	Radio (37 GHz)	Metsahovi
Optical/b band	Bradford Robotic Telescope	Radio (14 GHz)	UMRAO
		Radio (8 GHz)	UMRAO

Totally ~30 instruments/bands

Radio (8 GHz)

Simultaneity of the MW Observations

Observations are truly simultaneous → Very important during flaring activity That means <u>high reliability</u> of the results derived with these data

Describe Spectra with One-Zone Synchrotron Self-Compton(SSC) Model

Environmental electron spectrum parameters | | parameters $\gamma_{\min}, \gamma_{\max}, \gamma_{break}, S_1, S_2, n_e [\text{cm}^{-3}], B[\text{mG}], \log(\text{R[cm]}), \delta$ observation An emission blob with: direction Radius R in angle θ Magnetic field B Doppler factor δ **Relativistic electrons** $\beta = v/c, \qquad \gamma = (1 - \beta^2)^{-1/2}, \qquad \delta = \gamma^{-1} (1 - \beta \cos \theta)^{-1}$ Electron Energy Distribution (EED) $(n_e, s_1, s_2, \gamma_{\min}, \gamma_{break}, \gamma_{\max})$ $\frac{dN}{d\gamma} = \begin{cases} (for \ \gamma_{\min} < \gamma < \gamma_{break}) \ n_e \gamma^{-s_1} \\ (for \ \gamma_{break} < \gamma < \gamma_{\max}) \ n_e \gamma^{-s_2} \gamma_{break}^{s_2 - s_1} \end{cases}$ Using Hajime Takami 's SSC code Monthly Notices of the Royal Astronomical Society,

Volume 413, Issue 3, pp. 1845-1851

Example for Spectral Energy Distribution(SED)Content of this plot:and 1-zone SSC Modeling

- 1. reference: low/typical state SED from 2009 data (averaged)
- 2. 2010_03_15 SED

Example for SED and 2-zone SSC Modeling

Content of this plot:

- 1. reference: low/typical state SED from 2009 data (averaged)
- 2. 2010_03_11(high state) SED
- 3. SSC fit [quiescent blob + flaring blob]

4. SSC fit [flaring blob] quiescent blob (parameter stay the same during the whole activity. Choose the lowest state, MJD 55274 (~2009 average)

flaring blob

(blob size smaller, EED and B change day by day)

total

Mrk421 MW light curves flare 10th ~ 22nd March 2010

10th ~ 22nd March 2010 13 daily successive frames of broadband MW SEDs resolving the flare :

Mrk421 2010_03_10 (55265) [Day 1]

Mrk421 2010_03_11 (55266) [Day 2]

Mrk421 2010_03_12 (55267) [Day 3]

Mrk421 2010_03_13 (55268) [Day 4]

Mrk421 2010_03_14 (55269) [Day 5]

Mrk421 2010_03_15 (55270) [Day 6]

Mrk421 2010_03_16 (55271) [Day 7]

Mrk421 2010_03_17 (55272) [Day 8]

Mrk421 2010_03_18 (55273) [Day 9]

Mrk421 2010_03_19 (55274) [Day 10]

Mrk421 2010_03_20 (55275) [Day 11]

Mrk421 2010_03_21 (55276) [Day 12]

Mrk421 2010_03_22 (55277) [Day 13]

Mrk421 MW 2010_03_10 (55265) [Day 1]

Mrk421 MW 2010_03_13 (55268) [Day 4]

Mrk421 MW 2010_03_14 (55269) [Day 5]

Mrk421 MW 2010_03_15 (55270) [Day 6]

Mrk421 MW 2010_03_19 (55274) [Day 10]

lowest state: quiescent blob emission=this SED

Mrk421 MW 2010_03_22 (55277) [Day 13]

The last day (also low state)

Describe Variation of SED with Electron Energy Distribution(EED): 1-zone SSC model

The evolution of the SED during the flare can be explained, within the one-zone Synchrotron Self-Compton scenario, with variations in the high-energy part of the electron energy distribution, rather than the environment parameters (B,R, Doppler factor).

Describe Variation of SED in 2-zone SSC Model

It provides slightly better fits than 1-zone model (Gamma min helps a lot)

the flaring blob

Date[MJD]	$\operatorname{Flux}[cm^{-2}s^{-1}]$	B[mG]	log(R[cm])	δ	⊷10 ⁵
55265	3.8×10^{-10}	105.	15.51	35.	e [cm
55266	4.7×10^{-10}	100.	15.51	35.	≥_10⁴
55267	$4.0 imes 10^{-10}$ (v)	100.	15.51	35.	⊂ q
55268	$2.1 imes 10^{-10}$	100.	15.51	35.	≻ [∞] 10 ³ −
55269	$3.3 imes10^{-10}$	85.	15.51	35.	
55270	$2.3 imes 10^{-10}$	75.	15.51	35.	F
55271	$3.5 imes 10^{-10}$ (v)	75.	15.51	35.	10 ²
55272	$1.4 imes 10^{-10}$	75.	15.51	35.	
55273	$1.5 imes 10^{-10}$	75.	15.51	35.	10
55274	9.9×10^{-11}	60.	15.51	35.	
55275	$1.8 imes 10^{-10}$ $^{(w)}$	60.	15.51	35.	
55276	$1.6 imes 10^{-10}$	60.	15.51	35.	1
55277	1.2×10^{-10}	60.	15.51	35.	

the quiescent blob 38. 16.72 21.

Conclusion

Evolution of the broadband SED could be described with a onezone or a two-zone SSC model

Lower states: broader bumps in SEDs,

double-broken power law needed to describe EEDs **both** one-zone and two-zone models are fine

Higher states: sharper bumps in SEDs, broken power law needed to describe EEDs two-zone model is better in describing the SED evolution

Overall: The observed evolution of the SEDs favors the presence of two blobs, rather than the one single blob used typically to describe flares in TeV blazars

Backup Slides

Outline Flaring-Activity Study

- Data quality guarantee:
 - ✓ multi-wavelength coverage [energy]
 - ✓ simultaneity of observations [time]
- General situation: light curves
- □ Further study: spectra
 - ✓ Sample, model introduction, spectrum modeling samples
 - ✓ Day-by-day spectra
 - ✓ Summary of the evolution of spectra
- Conclusion

MW Simultaneity (I)

MW Simultaneity (II)

2010 Multi-wavelength Campaign for Mrk 421

2010 Multi-wavelength Campaign for Mrk 421

 50TeV 300GeV 50keV

 50GeV
 300MeV
 300 eV

2010 MW Light-Curve Frequency-Bands

Wave band	instrument	flux unit	mean freq. Hz	low freq. Hz	high freq. Hz	low energy	high energy
VHE	MAGIC	count/cm^2/s		4.84E+025	1.21E+028	200GeV	
VHE	VERITAS	count/cm^2/s		4.84E+025	1.21E+028	200GeV	
VHE	Whipple	count/cm^2/s		9.68E+025	1.21E+028	400GeV	
GammaRays	Fermi	ph/cm2/s		6.06E+022	6.06E+025	300MeV	300GeV
XRays	RXTE/PCA	erg/cm2/s		4.84E+017	7.26E+018	2.00keV	30.0keV
Xrays	SWIFT/BAT	count/cm2/s		3.63E+018	1.21E+019	15keV	50keV
Xrays	SWIFT/XRT	erg/cm2/s		4.84E+017	2.41E+018	2keV	10keV
Xrays	SWIFT/XRT	erg/cm2/s		7.25E+016	4.84E+017	0.3keV	2keV
Xrays	RXTE/ASM	ph/s		4.84E+017	2.41E+018	2keV	10keV
XRays	MAXI	ph/s		9.67E+017	2.41E+018	4keV	10keV
UVW2	SWIFT/UVOT	mJy	1.60E+015	1.37E+015	1.93E+015		
UVM2	SWIFT/UVOT	mJy	1.38E+015	1.24E+015	1.55E+015		
UVW1	SWIFT/UVOT	mJy	1.19E+015	1.05E+015	1.37E+015		
b	ROVOR	mJy	6.81E+014	6.14E+014	7.66E+014		
b	Bradford Robotic Telescope	mJy	6.81E+014	6.14E+014	7.66E+014		
V	New Mexico Skies	mJy	5.45e14	5.04e14	5.92e14		
V	ROVOR	mJy	5.45e14	5.04e14	5.92e14		
V	Bradford Robotic Telescope	mJy	5.45e14	5.04e14	5.92e14		
r	New Mexico Skies	mJy	4.68E+014	4.20E+014	5.29E+014		
r	ROVOR	mJy	4.68e14	4.20e14	5.29e14		
r	Bradford Robotic Telescope	mJy	4.68e14	4.20e14	5.29e14		
r	GLAST-AGILE Support Program	mJy	4.68e14	4.20e14	5.29e14		
r	Goddard Robotic Telescope	mJy	4.68e14	4.20e14	5.29e14		
r	Perkins	mJy	4.68e14	4.20e14	5.29e14		
r	Steward	mJy	4.68e14	4.20e14	5.29e14		
r	Crimean	mJy	4.68e14	4.20e14	5.29e14		
r	St.Petersburg	mJy	4.68e14	4.20e14	5.29e14		
Ι	ROVOR	mJy	3.79e14	3.47e14	4.19e14		
Radio	Metsahovi	Jy	37GHz	3.63E+010	3.87E+010	1.5e-4eV	1.6e-4eV
Radio	UMRAO	Jy	14GHz	1.26E+010	1.64E+010	5.2e-5eV	6.8e-5eV
Radio	UMRAO	Jy	8GHz	7.25E+009	8.70E+009	3.0e-5eV	3.6-5eV

ShangYu SUN

Light Curve Variability

Variability: the quantity showing how much each light curve fluctuates

Variability

(S. Vaughan et al. Mon.Not.Roy.Astron.Soc.345:1271,2003)

Light Curve Variability

Relation of <u>VHE</u> band - HIGH/LOW Energy <u>X-ray</u> band: Inverse-Compton(IC) regime

VHE band and HIGH/LOW Energy X-ray band

Mrk421 2010 Flares VHE, HE, Xray, Optical light curves

Mrk421 2010 March Very High Energy Light Curve

 A decaying flare in was observed by MAGIC and VERITAS in March (peak ~2 Crab). (Low state around 50% Crab)

10/03/2010 (55255) 22/03/2010 (55267) ; MAGIC
11 nights (10~ 80 min obs.)
VERITAS 9 nights (~10 min obs.)

Date[MJD]	Obs. Time[min.]
55265	40.75
55266	83.53
55268	10.94
55269	11.38
55270	19.38
55272	55.40
55273	19.40
55274	6.15
55275	20.88
55276	34.40
55277	58.45

Next: unprecedented data for blazar study: day-by-day broadband Mrk421 SEDs in flaring activity

Broadband Spectral Energy Distribution (SED)

Mrk421 2009 averaged SED

THE ASTROPHYSICAL JOURNAL, 736:131 (22pp), 2011 August 1

ABDO ET AL.

Describe Spectra with One-Zone Synchrotron Self-Compton Model

What changes during flaring activity?

Magnetic field ? Blob speed ? Blob size?

Multiple blobs? long-lasting quiescent blob + short-burst flaring blob + ...

Electron energy ?

Mrk421 MW 2010_03_11 (55266)

Mrk421 MW 2010_03_12 (55267)

Mrk421 MW 2010_03_13 (55268)

Mrk421 MW 2010_03_16 (55271)

Mrk421 MW 2010_03_17 (55272)

Mrk421 MW 2010_03_18 (55273)

54

Mrk421 MW 2010_03_20 (55275)

Mrk421 MW 2010_03_21 (55276)

1-blob Model

Table 2. Integral Flux and Fit Parameters of One-zone SSC Model

Date[MJD]	$\operatorname{Flux}(E>200GeV)[cm^{-2}s^{-1}]$	γ_{min}	γ_{max}	γ_{break1}	γ_{break2}	s_1	s_2	s_3	$n_e[cm^{-3}]$	B[mG]	log(R[cm])	δ
55265	3.8×10^{-10}	8.e2.	1.e8.	6.0e5.	6.0e5.	2.23	2.23	4.70	1.14e3.	38.	16.72	21.
55266	4.7×10^{-10}	8.e2.	1.e8.	6.6e5.	6.6e5.	2.23	2.23	4.70	1.16e3.	38.	16.72	21.
55267	$4.0 imes 10^{-10}$ (v)	8.e2.	1.e8.	1.6e5.	6.0e5.	2.23	2.70	4.70	1.10e3.	38.	16.72	21.
55268	2.1×10^{-10}	8.e2.	1.e8.	1.6e5.	6.0e5.	2.20	2.70	4.70	0.90e3.	38.	16.72	21.
55269	3.3×10^{-10}	8.e2.	1.e8.	1.2e5.	7.0e5.	2.20	2.70	4.70	0.95e3.	38.	16.72	21.
55270	2.3×10^{-10}	8.e2.	1.e8.	8.0e4.	3.9e5.	2.20	2.70	4.70	0.90e3.	38.	16.72	21.
55271	$3.5 imes 10^{-10}$ (v)	8.e2.	1.e8.	9.0e4.	5.0e5.	2.20	2.70	4.70	0.90e3.	38.	16.72	21.
55272	1.4×10^{-10}	8.e2.	1.e8.	5.0e4.	4.0e5.	2.20	2.50	4.70	0.90e3.	38.	16.72	21.
55273	1.5×10^{-10}	8.e2.	1.e8.	6.0e4.	3.9e5.	2.20	2.70	4.70	0.90e3.	38.	16.72	21
55274	$9.9 imes 10^{-11}$	8.e2.	1.e8.	3.5e4.	3.9e5.	2.20	2.70	4.70	0.90e3.	38.	16.72	21.
55275	$1.8 imes 10^{-10} \ (w)$	8.e2.	1.e8.	5.0e4.	3.9e5.	2.20	2.70	4.70	0.85e3.	38.	16.72	21.
55276	1.6×10^{-10}	8.e2.	1.e8.	5.7e4.	3.9e5.	2.20	2.70	4.70	0.90e3.	38.	16.72	21.
55277	1.2×10^{-10}	8.e2.	1.e8.	8.0e4.	3.9e5.	2.20	2.70	4.70	0.70e3.	38.	16.72	21.

Note. — The flux is from the MAGIC measurement except the case of no observation, in which VERITAS or Whipple measurement is instead used.

Note. $-^{(v)}$ VERITAS measurement. This flux value was measured around 7 hours after the simultaneous MW observation time.

Note. $-^{(w)}$ Whipple measurement. This flux value was measured around 7 hours after the simultaneous MW observation time.

2-zone Model

Table 3.Integral Flux and Fit Parameters of Two-zone SSC Model

Date[MJD]	$\mathrm{Flux}(E>200GeV)[cm^{-2}s^{-1}]$	γ_{min}	γ_{max}	γ_{break1}	γ_{break2}	s_1	s_2	s_3	$n_e[cm^{-3}]$	B[mG]	log(R[cm])	δ
the quiescent blob												
for all dates		8.e2.	1.e8.	3.5e4.	3.9e5.	2.2	2.7	4.7	0.9e3.	38.	16.72	21.
the flaring blob												
55265	$3.8 imes 10^{-10}$	3.0e4.	6.e5.	3.0e5.		2.0	3.0		5.0e3.	105.	15.51	35.
55266	4.7×10^{-10}	3.0e4.	6.e5.	3.0e5.		2.0	3.0		6.0e3.	100.	15.51	35.
55267	$4.0 imes 10^{-10}$ (v)	2.5e4.	6.e5.	1.1e5.		2.0	3.0		5.9e3.	100.	15.51	35.
55268	$2.1 imes10^{-10}$	5.3e4.	6.e5.	1.8e5.		2.0	3.0		5.6e3.	100.	15.51	35.
55269	$3.3 imes10^{-10}$	3.0e4.	6.e5.	1.8e5.		2.0	3.0		6.5e3.	85.	15.51	35.
55270	$2.3 imes10^{-10}$	3.5e4.	6.e5.	0.8e5.		2.0	3.0		6.0e3.	75.	15.51	35.
55271	$3.5 imes 10^{-10}$ (v)	3.5e4.	6.e5.	1.2e5.		2.0	3.0		6.5e3.	75.	15.51	35.
55272	$1.4 imes 10^{-10}$	3.5e4.	6.e5.	2.4e5.		2.0	5.0		4.0e3.	75.	15.51	35.
55273	$1.5 imes 10^{-10}$	3.5e4.	6.e5.	0.5e5.		2.0	3.0		4.0e3.	75.	15.51	35.
55274	$9.9 imes 10^{-11}$	3.5e4.	6.e5.	0.4e5.		2.0	3.0		1.4e3.	60.	15.51	35.
55275	$1.8 imes 10^{-10}$ (w)	3.5e4.	6.e5.	0.5e5.		2.0	3.0		5.0e3.	60.	15.51	35.
55276	$1.6 imes10^{-10}$	3.5e4.	6.e5.	0.8e5.		2.0	3.0		5.0e3.	60.	15.51	35.
55277	$1.2 imes 10^{-10}$	3.5e4.	6.e5.	0.8e5.		2.0	3.0		2.5e3.	60.	15.51	35.

During this flaring episode, VHE and X-ray bands vary the most.

VHE vs X-ray show a linear trend for 0.3-2 keV band, while a quadratic trend for the 2-10 keV band

Evolution of the broadband SED could be described with a onezone or a two-zone SSC model

Lower states: broader bumps in SEDs, at least 3 power-law indices needed to describe EEDs both one-zone and two-zone models are fine

Higher states: sharper bumps in SEDs, at least 2 power-law indices needed to describe EEDs two-zone model is better in describing the SED evolution

Overall: The observed evolution of the SEDs favors the presence of two blobs, rather than the one single blob used typically to describe flares in TeV blazars