

amma-ray Space Telescope

EBL & γ-ray emitting non-blazar AGN

Arita Reimer

Leopold-Franzens-Universität Innsbruck

on behalf of the Fermi-LAT collaboration

EWASS 2013: "The γ-ray sky in the era of Fermi & Cherenkov telescopes"

Turku, July 2013

-> constraints on galaxy evolution, star formation activity, dust-extinction processes, etc -> understanding cosmic structure formation & evolution

Attenuation of γ -ray source spectra by EBL

Samma-ray

[Adapted from: Costamante 2013]

Anita Reimer, Innsbruck University

Anita Reimer, Innsbruck University

•

Anita Reimer, Innsbruck University

Anita Reimer, Innsbruck University

EBL absorption negligible at <15 GeV for zs2

Source	Z	E_{max}	$ au_{UL}(z, E_{max})$	
J1147-3812	1.05	73.7	1.33	
J1504 + 1029	1.84	48.9	1.82	
J0808-0751	1.84	46.8	2.03	
J1016 + 0513	1.71	43.3	0.83	
J0229-3643	2.11	31.9	0.97	
J1012+2439	1.81	27.6	2.41	

.... with (robust) upper limits in the range:

Gamma-ray	UV after 46 months of	LAT operation
Space Telescope [Ackel	rmann et al 2012, Science, 338,	1190]
• 4	6-months of 1-500 GeV c	lata
 "best" (>3σ @3-10 	GeV) 150 BL Lacs from 2	LAC ('non-variable' in 2LAC)
 sub-divided 	l into 3 redshift bins (50 s	sources each):
$z = 0 \dots 0.2,$	0.20.5,	0.5 1.6
35 HSPs, 10 I SPs, 5 LSPs	27 HSPs, 18 ISPs, 5 LSPs	10 HSPs, 19 ISP, 21 LSPs

Disentangling intrinsic curvature from EBL-caused absorption Goal:

LAT energy range helps: negligible absorption in the EBL

- for < 15 GeV for sources @ any z<2 for < 100 GeV for z<0.2 sources $E_{crit} \sim 170 (1+z)^{-2.4} \text{ GeV}$

-> observational access to intrinsic source spectrum *(parametrized as LogParabola)* @ gamma rays

Anita Reimer, Innsbruck University

10

<u>Goal:</u> collective deviation of observed spectrum from its intrinsic one

Assumption: intrinsic spectrum represented by LogParabola within LAT E-range

Procedure:

in each redshift bin...

- fit spectra of all sources independently
- LogParabola-fit in [1GeV, E_{crit}] -> intrinsic spectrum & extrapolation to high energies
- Spectra of all sources modified by common term $exp[-b \tau(E,z)]$

[combine likelihoods]

$$F(E)_{obs} = F(E)_{intr} exp[-b \tau(E, z)_{model}]$$

<u>Test:</u>

(1) No EBL:

Null Hypothesis b=0

(2) Model prediction correct:

Null hypothesis b=1

TS=2 [Log L(b) - Log L(b=0/1)]

Anita Reimer, Innsbruck University

ermi iamma-ray	Results		A CONTRACTOR THEORY OF
Many EBL models tested	d: ■ NO EBL		model prediction correct
Model ^a	Significance of b=0 Rejection ^b	$b^{\rm c}$	Significance of b=1 Rejection ^d
Stecker et al. (2006) – fast evolution	4.6	0.10±0.02	17.1
Stecker et al. (2006) – baseline	4.6	$0.12 {\pm} 0.03$	15.1
Kneiske et al. (2004) – high UV	5.1	$0.37 {\pm} 0.08$	5.9 rejection
Kneiske et al. (2004) – best fit	5.8	$0.53 {\pm} 0.12$	<u>3.2</u> >3σ
Gilmore et al. (2012) – fiducial	5.6	$0.67 {\pm} 0.14$	1.9
Primack et al. (2005)	5.5	$0.77 {\pm} 0.15$	1.2
Dominguez et al. (2011)	5.9	$1.02 {\pm} 0.23$	1.1
Finke et al. (2010) – model C	5.8	$0.86 {\pm} 0.23$	1.0
Franceschini et al. (2008)	5.9	1.02 ± 0.23	0.9
Gilmore et al. (2012) – fixed	5.8	1.02 ± 0.22	0.7
Kneiske & Dole (2010)	5.7	$0.90 {\pm} 0.19$	0.6
Gilmore et al. (2009) – fiducial	5.8	0.99 ± 0.22	0.6

Chance probability of no EBL: ~ 6 σ
 -> significant steepening in blazar spectra for z≥0.5

• Data compatible with low-opacity models (i.e., EBL @ galaxy counts level)

Collective imprint of EBL absorption in γ -spectra

Formation and the second secon

In each redshift bin:

- Composite likelihood in small energy bins
- -> no spectral softening in blazar spectra
 z≤0.2 below ~150 GeV

-> cutoff moves in redshift & energy as expected for low-opacity EBL absorption

-> spectral softening due to absorption in the EBL if BL Lac properties do not change significantly across z~0.2 barrier ("cosmic conspiracy")

BUT: - intrinsic absorption possible [*Reimer 2007*]

-> source selection: BL Lac objects

- softening of BL Lac spectra along sequence HSP - ISP - LSP [e.g. Abdo etal.2010, Ackermann etal.2011]

Extension of LAT-spectrum by SSC-modelling

[Dominguez et al 2013]

- (hom. one-zone) SSC-modeling of 15 TeV BL Lacs with quasi-sim MWL (IR-GeV)-data to describe intrinsic spectrum
- comparison to observed IACT spectrum & maximum likelihood polynomial fitting of log τ(log E) under some assumptions for τ(E)

Anita Reimer, Innsbruck University

Dermi

EBL summary

Anita Reimer, Innsbruck University

- Stellar peak of the EBL SED (~0.4-10 μm) in agreement with "minimum EBL flux" from galaxy counts
- excess contribution (above galaxy counts EBL level) from Pop III stars disfavored from constraints @VHEs [Aharonian etal 06, Mazin&Raue'07]
- From LAT EBL analysis: UV component of EBL ~ 3 nW m⁻²sr⁻¹ @ z~1 HST galaxy counts: 2.9-3.9 nW m⁻²sr⁻¹ [Gardner etal 2000] -> residual diffuse UV background small
 - massive star SFR peak <0.5 $M_{sun}yr^{-1}Mpc^{-3}$ & @ z>10
 - BUT some challenges:
 - the strange case of PKS1424+24 (see A. Furniss Talk)
 - unusual hard VHE spectra of some high-z blazars

Are HE spectra of radio galaxies de-beamed <u>only</u> versions of blazar spectra?

Anita Reimer, Innsbruck University

Unifying AGN

OlO

N

[Elitzur 2011]

"Clumpy" Unification" [E"TZ [e.g., Elitzur 2011, 2012]

Typ 1

Further possible aspects:

Geometry of BLR, NLR (shell, sphere, toroidal,...?), corona, accretion rate, black hole mass,...

"Minimal Unification" [Urry & Padovani 1995]

Anita Reimer, Innsbruck University

Gamma-ray Space Telescope Gamma-ray Space Telescope

Name	Class	Z	GeV	1FHL	VHE	$\Gamma_{\rm LAT}$	$Lg(L_{LAT})$	Variability?
NGC1218	FRI	0.029	L			~2.0	~43.0	~years
NGC1275	FRI	0.018	L	+	Μ	~2.0	~44.0	~week-month var.
0625-354	FRI	0.055	L	+	cand.	~1.9	~44.0	
M87	FRI	0.004	L	+	H,M,V	~2.2	~41.7	1d-TeV var.
Cen A	FRI	0.0009	L, E	+	Η	~2.8	~41.1	~years
NGC6251	FRI	0.024	L, E			~2.2	~43.3	~years
IC310	FRI	0.019	L	+	Μ	~2.1	~42.9	1d-VHE var.
CenB	FRI	0.013	L			~2.3	~42.9	
Fornax A	FRI	0.006	L			~2.2	~41.7	~years

FRI: $L_{\gamma} \sim 10^{41-44} \text{ erg/s}, \Gamma_{\gamma} \sim 1.9-2.2$ (except. CenA)

[Abdo etal '10, Nolan etal. '12, Brown&Adams'12, Ackermann etal '13]

Anita Reimer, Innsbruck University

Name	Class	Z	GeV	1FHL	VHE	$\Gamma_{\rm LAT}$	Lg(L _{LAT})	Variability?
3C111	FRII/BLRG	0.049	L, E			~2.5	~44.0	~months var.
3C120	FRI/BLRG	0.033	L			~2.7	~43.4	~months var.
3C207	FRII/SSRQ	0.681	L			~2.4	~46.4	
3C380	FRII/SSRQ	0.692	L			~2.3	~46.6	
0943-76	FRII	0.27	L			~2.4	~45.4	
Pic A	FRII	0.035	L			~2.9	~43.3	

[Abdo etal '10, Nolan etal '12, Brown&Adams'12, Ackermann etal '13]

BLRG: L_{γ} ~ 10⁴³⁻⁴⁴ erg/s, Γ_{γ} ~ 2.5-2.7 FRII&SSRQ: L_{γ} ~ 10⁴³⁻⁴⁶ erg/s, Γ_{γ} ~ 2.3-2.9

=> No FRII, BLRGs yet detected at VHEs

Anita Reimer, Innsbruck University

Anita Reimer, Innsbruck University

VLBA 1,7GHz HST 1 x 1.0

52500

53000

53500

MJD

54000

0.05

size comparable to Schwarzschild radius ~10¹⁵cm

EWASS 2013, Turku, July 2013

54500

55000

55500

Anita Reimer, Innsbruck University

Case study: FRII/BLRG 3C111 @ high energie

- Space Telescope $M_{BH} \sim (2-3) 10^8 M_{o}$
- $\Theta \sim 18^{\circ}$

Gamma-ray

- Jet-disk connection [Chatterjee etal'11]
 - Connection between γ -ray flare (Oct/Nov'08) & ejection of new radio knot
- γ -ray flare during increasing mm-X flux (Oct/Nov'08) & ejection of new radio knot
- implied radio- γ co-spatiality suggests compact γ -ray emission region <0.1pc within ~0.3pc distance from black hole $\Gamma = 2.54 \pm 0.19$

F(E) (MeV cm

1000

E (MeV)

10

Not listed in 1FHL as likely VHE candidate source

[Grandi et al 2012] 10-8 phot cm-2 s-1 F_{>0.1 CeV} $F_{2-10 \text{ keV}}$ 10⁻¹¹erg cm⁻² s⁻¹ (mJy) (Jy) 230 CHz 5.54 5.465.5 5.52 5.48Modified Julian Day (x 10⁴) 43GHz [BU group]

VLBA

Anita Reimer, Innsbruck University

NLSy1: see F. D'Ammando's Talk

Conclusions & expectations for CTA

 Optical peak of today's EBL at galaxy counts level assuming 'reasonable' shapes for blazars SEDs

-> justified?

 LAT has detected imprint of EBL absorption in 3 redshift bins up to z~1.6
 -> goal for CTA: probe energy & redshift resolved extragalactic photon density

- HE radio galaxies: -> γ-ray emission from jet
 - compact emission region (core) -> blazars physics @ large viewing angle
 - lobes (e.g. CenA) -> energy transport along jet

FRI: HE @ VHE sources
FRII: not (yet?) detected above tens of GeV

Radio-quiet Sy: - no jet emission detected @ HE from Sy galaxies
 - Sy's ISM emission detectable in CTA energy range?

Gamma-ray Space Telescope