Modeling and Theory of Gamma-Ray Emitting Blazars

Markus Böttcher
North-West University
Potchefstroom
South Africa

Leptonic Blazar Model

Sources of External Photons

(→ Location of the Blazar Zone)

 \rightarrow d ~ pc - kpc

Spectral modeling results along the Blazar Sequence: Leptonic Models

Low magnetic fields (~ 0.1 G);

High electron energies (up to TeV);

Large bulk Lorentz factors (Γ > 10)

No dense circumnuclear material → No strong external photon field High-frequency peaked BL Lac (HBL):

The "classical" picture

Spectral modeling results along the Blazar Sequence: Leptonic Models

High magnetic fields (~ a few G);

Lower electron energies (up to GeV);

Lower bulk Lorentz factors ($\Gamma \sim 10$)

Obscuring Torus Plenty of circumnuclear material Strong external photon field

FSRQ

Intermediate BL Lac Objects

Spectral modeling with pure SSC would require extreme parameters (far sub-equipartition B-field)

Including External-Compton on an IR radiation field allows for more natural parameters and near-equipartition B-fields

 $\rightarrow \gamma$ -ray production on > pc scales?

Diagnosing the Location of the Blazar Zone

Energy dependence of cooling times:

Distinguish between EC on IR (torus →
Thomson) and optical/UV lines (BLR →
Klein-Nishina)

If EC(BLR) dominates:
Blazar zone should be inside BLR

→ γγ absorption on BLR photons

→ GeV spectral breaks

→ No VHE γ-rays expected!
 →VHE γ-rays from FSRQs must be from outside the BLR
 (e.g., Barnacka et al. 2013)

Hadronic Blazar Models

Requirements for lepto-hadronic models

- To exceed p- γ pion production threshold on interactions with synchrotron (optical) photons: $E_p > 7x10^{16} E^{-1}_{ph,eV} eV$
- For proton synchrotron emission at multi-GeV energies:
 E_p up to ~ 10¹⁹ eV (=> UHECR)
- Require Larmor radius $r_L \sim 3x10^{16} E_{19}/B_G cm \le a \text{ few } x \cdot 10^{15} cm \implies B \ge 10 G$ (Also: to suppress leptonic SSC component below synchrotron)
 - => Synchrotron cooling time: t_{sy} (p) ~ several days
 - => Difficult to explain intra-day (sub-hour) variability!
 - → Geometrical effects?

Leptonic and Hadronic Model Fits along the Blazar Sequence

3C454.3

Leptonic and Hadronic Model Fits along the Blazar Sequence

Leptonic and Hadronic Model Fits Along the Blazar Sequence

Lepto-Hadronic Model Fits Along the Blazar Sequence

RGB J0710+591 (HBL)

Distinguishing Diagnostic: Variability

 Time-dependent leptonic one-zone models produce correlated synchrotron + gamma-ray variability (Mastichiadis & Kirk 1997, Li & Kusunose 2000, Böttcher & Chiang 2002, Moderski et al. 2003)

Time-dependent leptonic one-zone model for Mrk 421

Distinguishing Diagnostic: Variability

 Time-dependent hadronic models can produce uncorrelated variability / orphan flares (Dimitrakoudis et al. 2012, Mastichiadis et al. 2013, Weidinger & Spanier 2013)

The Internal Shock Model

Central engine ejects two plasmoids (a,b) into the jet with different, relativistic speeds (Lorentz factors $\Gamma_b >> \Gamma_a$)

Shock acceleration \rightarrow Injection of particles with $Q(\gamma) = Q_0 \gamma^{-q}$ for $\gamma_1 < \gamma < \gamma_2$

Time-dependent, inhomogeneous radiation transfer

- Synchrotron
- SSC (→ Light travel time effects!)
- External Compton

Sokolov et al. (2004), Mimica et al. (2004), Sokolov & Marscher (2005), Graff et al. (2008), Böttcher & Dermer (2010), Joshi & Böttcher (2011), Chen et al. (2011, 2012)

Internal Shock Model

Time-dependent SED and light curve fits to PKS 1510-089 (SSC + EC[BLR])

(Chen et al. 2012)

Internal Shock Model

Discrete Correlation Functions

(Böttcher & Dermer 2010)

Parameter Study

Varying the External Radiation Energy Density

DCFs / Time Lags

(Böttcher & Dermer 2010)

Possible Distinguishing Diagnostic: X-Ray and Gamma-Ray Polarization

Upper limits on high-energy polarization, assuming perfectly ordered magnetic field perpendicular to the line of sight

- Synchrotron polarization:
 Standard Rybicki & Lightman description
- SSC Polarization:
 Bonometto & Saggion (1974) for Compton scattering in Thomson regime

(Zhang & Böttcher, 2013)

X-Ray and Gamma-Ray Polarization: FSRQs

3C279

Hadronic model: Synchrotron dominated => High Π , generally increasing with energy (SSC contrib. in X-rays).

Leptonic model: X-rays SSC dominated: $\Pi \sim 20 - 40 \%$; γ -rays EC dominated => Negligible Π .

X-Ray and Gamma-Ray Polarization: LBLs

BL Lacertae

Hadronic model: **Mostly synchrotron** dominated => High Π , except for X-rays, where SSC may dominate.

Leptonic model: X-rays = transition from sy. to SSC: **∏** rapidly decreasing with energy; γ-rays EC dominated \Rightarrow Negligible Π .

X-Ray and Gamma-Ray Polarization: IBLs

3C66A

Hadronic model: Synchrotron dominated => High Π , throughout X-rays and γ -rays

Leptonic model: X-rays sy. Dominated => High Π , rapidly decreasing with energy; γ -rays SSC/EC dominated => Small Π .

X-Ray and Gamma-Ray Polarization: HBLs

RX J0648.7+1516

Hadronic model: Synchrotron dominated => High Π

Leptonic model: X-rays sy. Dominated => High Π , rapidly decreasing with energy; γ -rays SSC/EC dominated => Small Π .

Partially Dis-ordered Magnetic Fields

- → <u>Turbulent Extreme Multi-zone</u> (TEMZ) Model (Marscher 2012)
- Many turbulent cells across jet cross-section;
- Each cell has random B direction;
- Explain rapid variability on > pc scales by only a small fraction of cells being active

Observational Strategy

 Results shown here are <u>upper limits</u> (perfectly ordered magnetic field perpendicular to line of sight)

 Scale results to actual B-field configuration from known synchrotron polarization (e.g., optical for FSRQs/LBLs)

=> Expect 10 - 20 % X-ray and γ-ray polarization in hadronic models!

 X-ray and γ-ray polarization values substantially below synchrotron polarization will favor leptonic models, measurable γ-ray polarization clearly favors hadronic models!

<u>Summary</u>

- Both leptonic and hadronic models can generally fit blazar SEDs well.
- 2. Distinguishing diagnostics: Variability, Polarization, Neutrinos?
- 3. Time-dependent hadronic models are able to predict uncorrelated synchrotron vs. gamma-ray variability
- 4. X-Ray / Gamma-Ray polarimetry as potential diagnostic? Hadronic Models predict high degree of X/gamma polarization

Internal Shock Model

Parameters / SED characteristics typical of FSRQs or LBLs

253 s

1e + 14

1e+16

1e + 18

Frequency [Hz]

1e+13

1e+12

 EF_{E} [Jy Hz]

1e + 20

1e+22

(Böttcher & Dermer 2010)

1e + 24