

The Fermi LAT and WMAP view of particle acceleration in supernova remnant HB 21

<u>G.Pivato</u>, J.W.Hewitt, and L.Tibaldo INFN and University of Padova pivato@pd.infn.it

on behalf of the *Fermi* LAT collaboration

Turku, July 11-12, 2013

Background on supernova remnant HB 21	Fermi LAT analysis 000	WMAP analysis	Nonthermal modeling	Conclusions

- \Rightarrow Background on supernova remnant HB 21
- ⇒ Fermi LAT analysis
 - \hookrightarrow morphological analysis
 - \hookrightarrow spectral analysis
 - \hookrightarrow spectral variations across the remnant
- \Rightarrow WMAP analysis
- \Rightarrow Nonthermal modeling
 - \hookrightarrow physical environment and emission mechanism
 - \hookrightarrow one-zone model
 - \hookrightarrow two-zone model
 - \hookrightarrow comparison with other SNRs
- \Rightarrow Conclusions

30:00.0

ic (J2000.0)

WMAP analysis

BACKGROUND ON SUPERNOVA REMNANT HB 21

HB21

- ⇒ Radio coordinates: I=89°.0, b=4°.9 (Green D.A., 2009)
- \Rightarrow Mixed morphology
- \Rightarrow age $\sim 10^4$ yr (Flower & Pineau des Forêts, 1999)
- \Rightarrow distance ~ 1.7 kpc (Byun et al., 2006)

51:00:00.0 30:00.0 50:00:00.0 50:00.0 48:00.0 46:00.0 44:00.0 42:00.0 20:40:00.0 RA (J2000.0)

distance problem

- \hookrightarrow estimation by Tatematsu et al. (1990): ~ 0.8 kpc adopted in Reichardt et al. (2012) paper
- \hookrightarrow estimation by Byun et al. (2006): \sim 1.7 kpc adopted in this work

Figure 2. Mosaicked ROSAT PSPC image of HB21: we have superposed the same radio contours as in Figure 1. The intensity range of this image is 10^{-4} -2.1 × 10^{-2} counts s⁻¹ arcmin⁻².

om Pannuti et al., The Astronomical Journal, 140, 2010 December

WMAP analysis

Nonthermal modeling

Conclusions

BACKGROUND ON SUPERNOVA REMNANT HB 21

HB21

- $\Rightarrow \begin{array}{l} \mbox{Radio coordinates:} \\ \mbox{I=89$^\circ.0, b=4$^\circ.9 (Green} \\ \mbox{D.A., 2009)} \end{array}$
- \Rightarrow Mixed morphology
- \Rightarrow age $\sim 10^4$ yr (Flower & Pineau des Forêts, 1999)
- \Rightarrow distance \sim 1.7 kpc (Byun et al., 2006)
- ⇒ interacting with molecular clouds

from Koo et al., The Astrophysical Journal, 552, May 2001

F10. 1.—1²CO J = 2–1 integrated intensity map of HB 21. The velocity range is from $v_{1,88} = +3.9$ to -17.5 km s⁻¹, and the integrated intensity varies from 0 to 64 K km s⁻¹. Overlaid contour map shows the 1420 MHz brightness distribution of HB 21 obtained by T90 using the TRAO synthesis telescope.

Fermi LAT analysis ●○○ WMAP analysis

Nonthermal modeling

Conclusions

Morphological analysis

Fermi LAT analysis ●○○ WMAP analysis

Nonthermal modeling

Conclusions

Morphological analysis

Fermi LAT analysis

WMAP analysis

Nonthermal modeling

Conclusions

Morphological analysis

			0000	
Background on supernova remnant HB 21	Fermi LAT analysis	WMAP analysis	Nonthermal modeling	Conclusions

MORPHOLOGICAL ANALYSIS

	Sources	TS	dof
	Null hypothesis	0	0
	4 point sources	256	10
Models compared	disk	302	5
\Rightarrow Four point sources	disk	316	7
$\Rightarrow disk (with and without 2FGL J2051.8+5054)$	+ 2FGL J2051.8+5054		
\Rightarrow radio emitting region	X-ray image	212	2
\Rightarrow X-ray emitting region	radio image	298	2
Ga	mma-ray		
Best fit disk parameter	s		
$\Rightarrow (1,b) = (88^\circ, 75\pm0^\circ, 0)$ $\Rightarrow r = 1^\circ, 19\pm0^\circ, 06$	04,4°.65±0°.06)		

Background on supernova remnant HB 21	Fermi LAT analysis ○●○	WMAP analysis	Nonthermal modeling	Conclusions
	SPECTRAL	ANALYSIS		

Gamma-ray Space Telescope

90 89 88 Galactic longitude [deg]

5				65	
S	PECTRAL	VARIATIONS	ACROSS	THE REMNAN	Г
Background o	n supernova remnant HB 21	. Fermi LAT analysis ○○●	WMAP analysis	Nonthermal modeling	Conclusio

Galactic longitude [deg] Giovanna Pivato (INFN-UNIPD)

90 89 88 Galactic longitude [deg]

Giovanna Pivato (INFN-UNIPD)

Turku, July 11-12, 2013

Radio spectral index below 10 GHz from the entire remnant = 0.38

break cannot be explained by spectral variations across HB 21

Background on supernova remnant l	HB 21 Fermi LAT analysis 000	WMAP analysis	onthermal modeling Cor	clusions
PHYSICAL E	NVIRONMENT	AND EMISSIC	N MECHANIS	SM

- $\Rightarrow~$ HB 21 lies in the vicinity of molecular clouds
- $\Rightarrow~$ [S II] but no [O III] \Rightarrow v_{shock} < 100 km s^{-1}, densities 2.5 cm^{-3} (Mavromatakis et al., 2007)
- \Rightarrow shocked CO filaments (densities $\sim 10^2 10^4$ cm $^{-3}$ and filling factors \leq 0.1, Koo et al., 2001)
- \Rightarrow HI density for expanding shell: \sim 8 cm⁻³ (Koo et Heiles, 1991)
- \Rightarrow maximum density (volume-average) = 25 cm⁻³

Gamma-ray Space Telescope

Background on supernova remnant l	HB 21 Fermi LAT analysis 000	WMAP analysis	onthermal modeling Cor	clusions
PHYSICAL E	NVIRONMENT	AND EMISSIC	N MECHANIS	SM

- $\Rightarrow~$ HB 21 lies in the vicinity of molecular clouds
- $\Rightarrow~$ [S II] but no [O III] $\Rightarrow~v_{shock}$ < 100 km s $^{-1}$, densities 2.5 cm $^{-3}$ (Mavromatakis et al., 2007)
- \Rightarrow shocked CO filaments (densities $\sim 10^2 10^4$ cm $^{-3}$ and filling factors \leq 0.1, Koo et al., 2001)
- \Rightarrow HI density for expanding shell: \sim 8 cm⁻³ (Koo et Heiles, 1991)
- \Rightarrow maximum density (volume-average) = 25 cm⁻³

Emission mechanism

- \Rightarrow hadronic scenario
- \Rightarrow leptonic scenario

Background on supernova remna	nt HB 21	Fermi LAT analysis 000	WMAI	P analysis	Nontherm •••••	nal modeling	Conclusions
PHYSICAL	ENVIRO	NMENT	AND	EMISSI	ON .	MECHA	NISM

- $\Rightarrow~$ HB 21 lies in the vicinity of molecular clouds
- $\Rightarrow~$ [S II] but no [O III] \Rightarrow v_{shock} < 100 km s^{-1}, densities 2.5 cm^{-3} (Mavromatakis et al., 2007)
- \Rightarrow shocked CO filaments (densities $\sim 10^2 10^4$ cm $^{-3}$ and filling factors \leq 0.1, Koo et al., 2001)
- \Rightarrow HI density for expanding shell: \sim 8 cm⁻³ (Koo et Heiles, 1991)
- \Rightarrow maximum density (volume-average) = 25 cm⁻³

Emission mechanism

 \Rightarrow hadronic scenario

$$\hookrightarrow \pi^\circ$$
-decay

 \Rightarrow leptonic scenario

Background on supernova remnan	t HB 21 Fermi LAT analy 000	sis WMAP ana	Ilysis Nontherr	nal modeling Conclusions
PHYSICAL	ENVIRONMEN	T AND EI	MISSION	MECHANISM

- $\Rightarrow~$ HB 21 lies in the vicinity of molecular clouds
- \Rightarrow [S II] but no [O III] \Rightarrow v_{shock} < 100 km s⁻¹, densities 2.5 cm⁻³ (Mavromatakis et al., 2007)
- \Rightarrow shocked CO filaments (densities $\sim 10^2 10^4$ cm $^{-3}$ and filling factors \leq 0.1, Koo et al., 2001)
- \Rightarrow HI density for expanding shell: \sim 8 cm⁻³ (Koo et Heiles, 1991)
- \Rightarrow maximum density (volume-average) = 25 cm⁻³

Emission mechanism

 \Rightarrow hadronic scenario

$$\hookrightarrow \pi^0$$
-decay

- \Rightarrow leptonic scenario
 - $\, \hookrightarrow \, \text{ IC scattering} \,$
 - \hookrightarrow non-thermal Bremsstrahlung emission (dominates over IC for large density as in HB 21)

Background on supernova remnant HB 21	Fermi LAT analysis 000	WMAP analysis	Nonthermal modeling ○●○○	Conclusions
	ONE-ZONE	E MODEL		
	emitting zone = be	st fit γ -ray disk		
nuclei and	d electrons described	by: $\frac{dN}{dp} \propto \eta_{e,p} p^{-\Gamma} \epsilon$	$e^{-\frac{p}{P_{max}}}$	
	Gam	ery ma-ray Telesco	nî ope	

Model	Index	$p_{ m max}$	$n_{ m H}$	$B_{ m tot}$	η_{e}/η_{p}	W_{p}	W_e
		[GeV/c]	[cm ⁻³]	$-[\mu G]$		[erg]	[erg]
IC	1.76	100	0.1	2	1	1.3×10^{50}	2.1×10^{51}
Brems.	1.76	19	15	24	6.4	$ imes 10^{48}$	3.0×10 ⁴⁸
π^0 -decay	1.76	8.1	15	140	0.001	3.0×10^{49}	1.1×10^{47}

Giovanna Pivato (INFN-UNIPD)

Background on supernova remnant HB 21	Fermi LAT analysis 000	WMAP analysis	Nonthermal modeling ○○●○	Conclusions
	Two-zon	E MODEL	,	
zone $1 ightarrow$ dense filar	ments $\rightarrow n = 500 \text{ cm}^{-3}$	$^{-3}$, filling factor =	$0.03 ightarrow \gamma$ -ray emission	
2016	$2 \rightarrow n = 1 \operatorname{cm}^{-1}, D$	_ 30 μG		
			тĭ	
	Gan			
	Space			

possible Bremsstrahlung origin of γ -ray emission from dense filaments, BUT not well constrained by data

Background on supernova remnant HB 21	Fermi LAT analysis 000	WMAP analysis	Nonthermal modeling ○○○●	Conclusions
Comparison	with othe Fermi	r SNRs LAT	DETECTED	BY
		0		
characteristic	HB 21		other SN	R
luminosity mass shocked clouds	$(3.3 \pm 0.6) imes 10^3 \ \sim 3000 \; M$	$\frac{1}{2}$ erg s ⁻¹	$\geq 10^{35}$ erg s $^{-1}$ > $10^4~M_{\odot}$ (IC 443	(IC443) 8 and W44)
			0	
^a Byun et al. (2006) ^b Katagiri et al. (2011) ^c Abdo et al. (2010)	Gam	ma-ray	ml	
	Space			

Background		supernova				
------------	--	-----------	--	--	--	--

Fermi LAT analysis

WMAP analysis

0000

Nonthermal modeling

COMPARISON WITH OTHER SNRs DETECTED BY Fermi LAT

characteristic	HB 21	other SNR
luminosity	$(3.3\pm0.6) imes10^{34}~{ m erg~s^{-1}}$	$\geq 10^{35} { m ~erg~s^{-1}} { m (IC443)}$
mass shocked clouds	$\sim 3000~M_{\odot}^{a}$	$>10^4~M_{\odot}$ (IC 443 and W44)
radio index	flat	flat (IC 443 and W 44)
(
	Co Pr	
^a Byun et al. (2006)		
^b Katagiri et al. (2011)		
^c Abdo et al. (2010)		
Possible explanation		
\Rightarrow ionization losses (Leahy, 2006)	
\Rightarrow low-frequency abs	orption by thermal electrons (Leahy, 20	06)
\Rightarrow re-acceleration tak	es place in the compressed cloud (Uchi	yama et al., 2010)

Fermi LAT analysis

WMAP analysis

Nonthermal modeling

Conclusions

Comparison with other SNRs detected by Fermi LAT

characteristic	HB 21	other SNR			
luminosity	$(3.3\pm0.6) imes10^{34}~{ m erg~s^{-1}}$	$\geq 10^{35}$ erg s $^{-1}$ (IC443)			
mass shocked clouds	$\sim 3000~M_^a$	$>10^4~M_\odot$ (IC 443 and W44)			
radio index	flat	flat (IC 443 and W 44)			
cutoff or break in γ -ray	yes	Cygnus Loop ^b , W28 ^c			
e prm					
^a Bvun et al. (2006)					

^aByun et al. (2006) ^bKatagiri et al. (2011) ^cAbdo et al. (2010)

Gamma-ray

Possible explanation

- \Rightarrow runaway cosmic rays illuminating nearby clouds (Gabici et al., 2009)
- \Rightarrow re-acceleration in highly-compressed shocks (Uchiyama et al., 2010)
- \Rightarrow magnetic damping of Alfven waves in a partially ionized medium (Malkov et al., 2011)

Backup slides

Gamma-ray Space Telescope

How to calculate systematic errors on Morphology

Systematic errors: disk shifted toward north-western part shifts in longitude between 0°.19 and 0°.24, and in latitude between 0°.06 and 0°.09 the radius is smaller by 0°.18 - 0°.24

How to calculate systematic errors on Spectrum

How to calculate systematic errors on spectrum

Alternative models developed by:

F.de Palma, G.Johannesson, L.Tibaldo, T.J.Brandt, J.Ballet, J.W.Hewitt, and F.Acero

Systematic errors

- \Rightarrow Effective area (EA)
- \Rightarrow Interstellar emission model (ISM)

Compare results obtained with 8 different models changing

- \Rightarrow spin temperature of atomic hydrogen (150 K and 10⁵ K)
- \Rightarrow height of CR propagation halo (4 kpc and 10 kpc)
- ⇒ CR source distribution in the Galaxy (Lorimer (2006) and SNR distribution by Case&Bhattacharya (1998))

 $\sigma_{EA,ISM} = \sqrt{\frac{\sum_{i=1}^{n_{alt}} (x_{alt} - x_{standard})^2}{n_{alt}}}$ $\sigma_{tot} = \sqrt{\sigma_{EA}^2 + \sigma_{ISM}^2}$