

Reionisation at Planck era

Marian Douspis

Institut d'Astrophysique Spatiale Université Paris-Sud

M. Langer, S. Ilic, N. Aghanim, A. Gorce, M. Tristram

How and when did Reionisation occur?

CMB	First stars	First	First	Reionisation	Today
372 000 years	100 Myrs ?	galaxies?	quasars?	Complete at 1Gyr (?)	13.8 Gyrs

Epoch of Reionisation (EoR): period during which the cosmic gas went **from neutral to ionised** through the action of the **first luminous, ionising sources**.

Reionisation & the CMB

- "Symmetric" (standard tanh)
 - 2 parameters: z_{re} , Δz

- Model independent
 - $x_e(z)$ in redshift bins
 - Principal Component Analysis
 - M. Douspis, TT 2016, Tuorla

Reionisation & the CMB

CMB provides information on Reionisation through:

- Temperature anisotropies
 - suppression of TT power at large multipoles (very degenerate with other cosmological parameters and foregrounds)
- Polarisation anisotropies
 - suppression of EE power at large multipoles
 - new polarisation anisotropy at large angular scale because the horizon has grown to a much larger size by that epoch
- •Kinetic Sunyaev-Zel'dovich effect
 - re-scattering of CMB photons off newly liberated electrons (Sunyaev & Zel'dovich 1980)

Reionisation & CMB polar: low-*l*

CMB is a good probe of the optical depth τ

Reionisation optical depth

CMB data

- WMAP
 - $\tau = 0.089 \pm 0.014$

• Planck 2013

- τ = 0.089 ± 0.014 (TT with WP)
- τ = 0.075 ± 0.013 (TT with WP-HFI dust)

• Planck 2015

- τ = 0.078 ± 0.019 (TT + lowP)
- τ = 0.066 ± 0.016 (TT + lowP + lensing)
- τ = 0.067 ± 0.016 (TT + lensing + BAO)
- Planck HFI EE low- ℓ
 - decreasing trend continues ... ?

Planck HFI low-*L*

- Previous Planck data: strongest systematics = ADC-NL
 - has been reduced by a factor almost 10 but still not negligible on frequency maps
- Identified: all dominant sources of residual systematics that matter for low- l data analysis
- Results on E2E Monte-Carlo simulations including ADC-NL
 - no bias on cross-spectra

Results: two versions of *Planck* analysis based on two different noise/system statistics

- Likelihood based on cross-spectra between Planck frequency maps
 - Lollipop likelihood: Hamimeche & Lewis (2008) approximation modified for crossspectra, Mangilli, Tristram et al. (2015) → Planck intermediate results. XLVII. Planck constraints on reionization history (arXiv:1605.03507)
 - SimBaL ("simulation-based likelihood") → Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth (arXiv:1605.02985)

Reionisation optical depth

Results: from a combination of

- 1. Planck TT CMB spectrum (2015)
- 2. two versions of Planck EE low-*l*
- 3. Very High-*l* ground-based experiments (ACT & SPT)

Symmetric model

Planck constraints on reionization history (arXiv:1605.03507)

.....

Asymmetric model

Planck constraints on reionization history (arXiv:1605.03507)

Kinetic SZ effect from Reionisation

IAS Orsay

Kinetic SZ effect from Reionisation

 Second-order effect, photons scattering off electrons that are moving with a bulk velocity (Sunyaev & Zel'dovich, 1980)

Homogeneous kSZ (Ostriker & Vishniac, 1986)
 - arising when Reionisation is complete

$$D_{\ell=3000}^{\rm h-kSZ} \propto \left(\frac{\tau}{0.076}\right)^{0.44}$$

Shaw et al. 2012

Patchy (or inhomogeneous) Reionisation (Aghanim et al. 1996)
 before Reionisation is complete: proper motion of ionised bubbles around emitting sources

$$D_{\ell=3000}^{\rm p-kSZ} \propto \left[\left(\frac{1+z_{\rm re}}{11} \right) - 0.12 \right] \left(\frac{\Delta_z}{1.05} \right)^{0.51}$$
 Battaglia et al. 2013

 Planck: not able to measure kSZ independently
 requires high resolution CMB data: ACT & SPT

Planck constraints on reionization history (arXiv:1605.03507)

Optical depth: summary

Planck: CMB & structures in agreement

Planck intermediate results. XLVII. Planck constraints on reionization history (arXiv:1605.03507)

- integrated optical depth for the symmetric model (tanh, Δz = 0.5)
- models from Bouwens et al. (2015), Robertson et al. (2015), Ishigaki et al. (2015), using high redshift galaxy UV and IR flux and/or "direct" measurements

Low redshift probes

Combining probes

f_{esc}~0.2

Observational constraints on key-parameters of cosmic reionisation history, Gorce, Douspis, Aghanim, Langer (A&A sub.)

15

z

20

25

30

10

Discussion

- A lower value for **T** as suggested by Planck data is
 - consistent with a fully reionised Universe at z ~ 6
 Gunn-Peterson effect showing Universe is mostly ionized up to z ~ 6 (Fan et al.)
 - in good agreement with recent constraints on Reionisation in the direction of particular objects (in particular distant GRB and Ly-α emitters)
- Reionisation history: large amount of star-forming galaxies beyond z = 15 not required
- Maintaining a UV-luminosity density at the maximum level allowed by the luminosity density constraints at redshifts z < 9 and considering only the currently observed galaxy population at $M_{\rm UV}$ < -17 seems to be sufficient to comply with all observational constraints without the need for high redshift (z = 10 to 15) galaxies
- CMB: all Reionisation information extracted? → next: spectral distortions of Black Body?!

.....