Ultra-Diffuse Galaxies - dwarfs or giants ?

David Martinez-Delgado, **Ronald Läsker**, Margarita Sharina, Elisa Toloba, Jürgen Fliri, Rachael Beaton, David Valls-Gabaud, Igor D. Karachentsev, Taylor S. Chonis, Eva K. Grebel, Duncan A. Forbes, Aaron J. Romanowsky, J.Gallego-Laborda, Karel Teuwen, M.A. Gomez-Flechoso, Jie Wang, Puragra Guhathakurta, Serafim Kaisin, Nhung Ho

Ultra-Diffuse Galaxies - what are they?

- "New": firstly observed 2015, van Dokkum et al., 47 UDGs
- not a misnomer:

dwarfs : $M_{\bigstar} \sim 10^7 - 10^8 M_{sun} \rightarrow \mu_{g,c} \sim 26 \text{ mag/arcsec}^2$ diffuse : Re ~ 1.5 - 4.5 kpc

- probably Dark-Matter dominated in order to be longlived in cluster environments
- Milky-Way sized galaxies with the (stellar) mass of small dwarf-Ellipticals !!

van Dokkum+15:

- 47 objects overlapping the Coma cluster
- no redshift distances
- but stars not resolved even with HST/ACS

credit: van Dokkum et al. (2015)

van Dokkum et al. (2015)

UDG Globular Cluster (GC) population

- Beasley & Trujillo (2016): "DF27"
 - → $N_{GC}=27\pm5$ → high specific GC frequency → $M_{DM}\sim10^{11}M_{sun}$, $f_{DM}\sim1000$

UDG Globular Cluster (GC) population

Beasley+16:
 VCC128

UDG Globular Cluster (GC) population

- Beasley+16: VCC128
- also high specific GC frequency
- $M_{DM} \sim 10^{11} M_{sun}, f_{DM} \sim 1000$
- in Re, f_{DM}~100 (cf. van Dokkum+16)

- "DF44": N_{GC} ~ 100 (!)
- $M_{DM} \sim 10^{12} M_{sun}$ (MW!)
 - in Re, f_{DM}~50

Another UDG: DGSAT-I

 first UDG with confirmed distance (78 Mpc, redshift): hence confirmed size & luminosity

- first data collected with:
 I5-cm aperture refractor, 43800s exposure time
 40-cm Newton telescope, I3200s exposure time
- original purpose: search for M31 dSphs
- no stars resolved in follow-up Subaru V,I-band images!

Follow-up observations of DGSAT-I

 Subaru SuprimeCam images in V+I band from the SMOKA archive, 7000s total integration time

 \rightarrow no stars resolved at 0.6" resolution!

 slit spectroscopy: SCORPIO spectrograph on the 6-m BTA telescope of the SAO RAS

total 25200s, coverage 3700-5500Å, resolution 5Å

• Hα narrow-band imaging

Results

- $V_h = 5450 \pm 40 \text{ km/s} \rightarrow V_{LG} = 5718 \pm 40 \text{ km/s}$
 - → Hubble distance 78 Mpc

 \rightarrow association with an outer filament of the Pisces-Perseus supercluster

 \rightarrow but isolation is also possible

Photometric analysis

 important and difficult: complete masking and precise background subtraction

→ multi-step masking and object detection

- use GALFIT to fit a Sersic profile
- no background component to reduce degeneracy
- optionally fit central-offset overdensity (bar?) with separate component, or mask it (?)

Photometric analysis: GALFIT

Photometric analysis: GALFIT

19 kpc

quantity	value
Right Ascension	01h17m35.59s
Declination	+33° 31′ 42′′37
radial velocity	$5450 \pm 40 {\rm km s^{-1}}$
apparent magnitude	18.5 (SDSS g-band)
	17.7 (SDSS <i>i</i> -band)
central surface brightness	$25.0 \mathrm{mag}\mathrm{arcsec}^{-2}$ (g-band)
	$24.4 \mathrm{mag arcsec^{-2}}$ (<i>i</i> -band)
luminosity	$3.6 \times 10^8 L_{\odot,g}$
	$3.5 \times 10^8 L_{\odot,i}$
g-i color	0.9
central $g - i$ color	0.6
effective radius (R_e)	$4.7\pm0.5\mathrm{kpc}$
axis ratio (b/a)	0.9
Sérsic index (n)	0.6

mass-to-light ratio (<i>i</i> -band)	$0.8M_\odot/L_{\odot,i}$
stellar mass	$2.9 imes 10^8M_{\odot}$
gas mass (HI)	$< 5.8 imes 10^8 M_{\odot}$
SFR	$< 0.003 M_{\odot} { m yr}^{-1}$
sSFR	$< 6 \times 10^{-11} \mathrm{yr}^{-1}$

Color (V-I) : central offset overdensity is ~0.4mag bluer !

Color (V-I) : central offset overdensity is ~0.4mag bluer !

Koda+15 (arXiv:1506.01712): 800 (!) UDGs in Coma

Koda+15 (arXiv:1506.01712): 800 (!) UDGs in Coma

Ongoing / Future Work

- spatially resolved spectroscopy (e.g., MUSE proposal) to get:
 - kinematic structure, especially ROTATION
 - (inner) mass profile, esp. DM profile
 - stellar population (incl. gradient)
- Globular Cluster kinematics for DM halo mass/profile
- GC counts and metallicities (formation, accretion/ mergers?)
- improve Numbers of analyzed UGDs

Summary

- UDGs may be very ubiquitous and contribute significantly to the faint galaxy population
- Dark Matter content unclear at the moment but likely high
- still need to find a consensus formation model
- more to come soon, including resolved spectroscopy (but hard!)