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Why does one consider multiscalar-tensor (MSTG) theories?

@ In order to give theoretical reasoning to dark energy, in this case residing in the
potential U(®) of the scalar fields. Let us also point out that the potential U/
behaves similarly to the cosmological constant A.

@ Nonminimal couplings are typically generated by quantum corrections and arise in
the effective models of higher dimensional theories.

@ A number of models can be recast into MSTG form, e.g.

e In case the Lagrangian is a function of higher derivatives of the curvature,
f(R;O'R), each such argument can be converted to a nonmimimal scalar in MSTG.

1
S = 272/,Egd“xf (R,OR,O°R,...,0"R) + Su [guv» Xm]
K

e etc.

Once we have been attracted by such theories, we must determine what constraints
must be validated in order to pass the Solar system tests. In order to check soundness
the Parametrized Post-Newtonian (PPN) scheme has been put forth.
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Geometric interpretation

@ The PPN formalism has been developed to extract standardized information — the
PPN parameters — characteristic of the slow motion weak field regime of metric
gravity theories.
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@ The PPN formalism has been developed to extract standardized information — the
PPN parameters — characteristic of the slow motion weak field regime of metric
gravity theories.

@ The PPN calculations are done order by order. In other words orders of magnitude
are ascribed to all quantities relative to the velocity v/ = u'/u® of the source
matter, which is taken to be a first order small quantity.
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@ In analogy with GR, gravity is sourced by matter, which is modeled by a perfect
fluid.
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Geometric interpretation

The PPN formalism has been developed to extract standardized information — the
PPN parameters — characteristic of the slow motion weak field regime of metric
gravity theories.

The PPN calculations are done order by order. In other words orders of magnitude
are ascribed to all quantities relative to the velocity v/ = u'/u® of the source
matter, which is taken to be a first order small quantity.

In analogy with GR, gravity is sourced by matter, which is modeled by a perfect
fluid.

In the PPN approach it is argued that up to second order, that is necessary for
calculating the Eddington parameter v, the only surviving component of the
stress-energy tensor Tﬁ(flf) is

T = -TW = px 0(2),
where p is the energy density.
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Geometric interpretation

The PPN formalism has been developed to extract standardized information — the
PPN parameters — characteristic of the slow motion weak field regime of metric
gravity theories.

The PPN calculations are done order by order. In other words orders of magnitude
are ascribed to all quantities relative to the velocity v/ = u'/u® of the source
matter, which is taken to be a first order small quantity.

In analogy with GR, gravity is sourced by matter, which is modeled by a perfect
fluid.

In the PPN approach it is argued that up to second order, that is necessary for
calculating the Eddington parameter v, the only surviving component of the
stress-energy tensor Tﬁ(flf) is

T =-TW = px 0(2),

where p is the energy density.
In the calculation we specify the matter source to be a point mass My residing at
the origin of spatial coordinates, p = Myd(r).
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Parametrized Post-Newtonian approximation

@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

e . g
background metric is Minkowskian (g)m, = 1), and the scalar field is at some

(0)
constant value ® = const.
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background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

. . . (0) . .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

. . . (0) . .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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Geometric interpretation

The PPN formalism has been developed to extract standardized information — the
PPN parameters — characteristic of the slow motion weak field regime of metric
gravity theories.

The PPN calculations are done order by order. In other words orders of magnitude
are ascribed to all quantities relative to the velocity v/ = u'/u® of the source
matter, which is taken to be a first order small quantity.

In analogy with GR, gravity is sourced by matter, which is modeled by a perfect
fluid.

In the PPN approach it is argued that up to second order, that is necessary for
calculating the Eddington parameter v, the only surviving component of the
stress-energy tensor Tﬁ(flf) is

T = -TW = px 0(2),

where p is the energy density.
In the calculation we specify the matter source to be a point mass My residing at
the origin of spatial coordinates, p = Myd(r).
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

. . . (0) . .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

. . . (0) . .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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0 =—r’gu U = Ulg=Uy=0,
F ®

@ Analogously for the scalar equation of motion
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

. . . (0) . .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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@ Analogously for the scalar equation of motion
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

. . . (0) . .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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Geometric interpretation

The PPN formalism has been developed to extract standardized information — the
PPN parameters — characteristic of the slow motion weak field regime of metric
gravity theories.

The PPN calculations are done order by order. In other words orders of magnitude
are ascribed to all quantities relative to the velocity v/ = u'/u® of the source
matter, which is taken to be a first order small quantity.

In analogy with GR, gravity is sourced by matter, which is modeled by a perfect
fluid.

In the PPN approach it is argued that up to second order, that is necessary for
calculating the Eddington parameter v, the only surviving component of the
stress-energy tensor Tﬁ(flf) is

T = -TW = px 0(2),

where p is the energy density.
In the calculation we specify the matter source to be a point mass My residing at
the origin of spatial coordinates, p = Myd(r).
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the
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background metric is Minkowskian g, = 7,,, and the scalar field is at some
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constant value ® = const.
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

. . . (0) . .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

. . . (0) . .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
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constant value ® = const.
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

e . g
background metric is Minkowskian (g)m, = 1), and the scalar field is at some

(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

.. . . (0) - .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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@ The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

.. . . (0) - .
background metric is Minkowskian g, = 7,,, and the scalar field is at some
(0)
constant value ® = const.

@ In order to check the consistency conditions, let us study the equations of motion.
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0=¢7,
K2 OoU ou
T =Fe =U; =0
er=7 (2]—' aqw) R (i

M. Hohmann, L. Jarv, P. Kuusk, E. Randla, O. Vilson PPN ~ for MSTG



Sources

Asymptotics

Perturbations

Equations for perturbed variables
Solutions

Parametrized Post-Newtonian approximation
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The PPN formalism assumes that asymptotically the spacetime is flat, i.e. that the

e . o
background metric is Minkowskian (g)w, = 1), and the scalar field is at some

(0)
constant value ® = const.

In order to check the consistency conditions, let us study the equations of motion.

1
0 :?,&g,wu = u‘(g) =U =0,
Analogously for the scalar equation of motion
0=¢7,
K> OU ou
v praf M —— | =U; =
E =7 (orgen) = geslg=th=0

. . R .
Hence we obtain that the potential I/ and also its first derivative must be
asymtotically vanishing (Minkowski background does not allow cosmological
constant A).
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@ The perturbed spacetime metric is taken to be a perturbed Minkowski metric
uv = Nuv + hw/-
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@ The perturbed spacetime metric is taken to be a perturbed Minkowski metric

uv = Nuv + hw/-
@ Only the metric components of order O(2), written as

@
hoo = 2 Geg Un(r) ,
@)

h,‘j :2Geﬁr'yUN(r)5,-j,

are relevant for the calculation of the PPN parameter ~.
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Geometric interpretation

The PPN formalism has been developed to extract standardized information — the
PPN parameters — characteristic of the slow motion weak field regime of metric
gravity theories.

The PPN calculations are done order by order. In other words orders of magnitude
are ascribed to all quantities relative to the velocity v/ = u'/u® of the source
matter, which is taken to be a first order small quantity.

In analogy with GR, gravity is sourced by matter, which is modeled by a perfect
fluid.

In the PPN approach it is argued that up to second order, that is necessary for
calculating the Eddington parameter v, the only surviving component of the
stress-energy tensor Tﬁ(flf) is

T = -TW = px 0(2),

where p is the energy density.
In the calculation we specify the matter source to be a point mass My residing at
the origin of spatial coordinates, p = Myd(r).
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@ The perturbed spacetime metric is taken to be a perturbed Minkowski metric

uv = Nuv + hw/-
@ Only the metric components of order O(2), written as

@
hoo = 2 Geg Un(r) ,
@)

h,‘j :2Geﬁr'yUN(r)5,-j,

are relevant for the calculation of the PPN parameter . Here G is the effective

gravitational constant and Up(r) = % is the Newtonian gravitational potential

which depends on the distance from the source point mass.
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Geometric interpretation

The perturbed spacetime metric is taken to be a perturbed Minkowski metric

uv = Nuv + hw/-
Only the metric components of order O(2), written as

@
hoo = 2 Geg Un(r) ,
@)

h,‘j :2Geﬁr'yUN(r)5,-j,

are relevant for the calculation of the PPN parameter . Here G is the effective
gravitational constant and Up(r) = % is the Newtonian gravitational potential
which depends on the distance from the source point mass.

Also the perturbed scalar field is given as

(0) (2)
O(x1) = O + d(xH).
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Geometric interpretation

The perturbed spacetime metric is taken to be a perturbed Minkowski metric

uv = Nuv + hw/-
Only the metric components of order O(2), written as

@
hoo = 2 Geg Un(r) ,
@)

h,‘j :2Geﬁr'yUN(r)5,-j,

are relevant for the calculation of the PPN parameter . Here G is the effective
gravitational constant and Up(r) = % is the Newtonian gravitational potential
which depends on the distance from the source point mass.

Also the perturbed scalar field is given as
(0) ()
Y (xH) = Y 4 d¥(xH).

When writing down the equations for perturbed variables we take into account
that the time derivatives are weighted with an additional velocity order O(1).
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@ The equation for the scalar field
2(2) 2
VeoT = M7 0% + k7p,
where k7 = K7|p and the components of the “mass matrix" are

ou

2
v _ | K s Y
Ma 2]—'FY 0PBode 0'
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@ The equation for the scalar field
2@ L@y
Vol = MY 0% + kTp,
where k7 = 7|y and the components of the “mass matrix” are

ou

2
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@ The equation for the scalar field
2(2) 2
VeoT = M7 0% + k7p,
where k7 = K7|p and the components of the “mass matrix" are
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Geometric interpretation
@ The equation for the scalar field
2@ L@y
Vo7 = M7 0%+ k7p,
where k7 = K7|p and the components of the “mass matrix" are

2 2
v | B e OU
Ma {pr oPBode |-
(2)
@ The equation for hgg

@ 1 OF

2
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Geometric interpretation

@ The equation for the scalar field
2(2) 2
VeoT = M7 0% + k7p,
where k7 = K7|p and the components of the “mass matrix" are
ou
v B
M [ a 8¢56¢a]

(2)
@ The equation for hgg

@ 1 OF
2
h —
v < 007 7o 0de
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@ The equation for hj

(2)
v? <hj N

@ K2
Foligen | ® ) = TR P
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Geometric interpretation

@ The equation for the scalar field

@) ) .
V207 = M7 0% + k7p,

where k7 = K7|p and the components of the “mass matrix" are

ou

v B

M [ a 8¢56¢a]

(2)
@ The equation for hgg
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2
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v < 007 7o 0de
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@ The equation for hj

(2)
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@ K2
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Parametrized Post-Newtonian approximation

2(2) (2)a
V20T = MY, + K7p,

@ It is easier to integrate the scalar field equation when the mass matrix is turned
into its Jordan normal form, J(’Bgé) = (P_l)(ﬁ)VMVaPO‘(é). Here the similarity
matrix P is constructed from the components of the eigenvectors or generalized
eigenvectors of the mass matrix.
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Geometric interpretation

2(2) (2)a
V20T = MY, + K7p,

It is easier to integrate the scalar field equation when the mass matrix is turned
into its Jordan normal form, J(’Bgé) = (P_l)(ﬁ)vaaPo‘(é). Here the similarity
matrix P is constructed from the components of the eigenvectors or generalized
eigenvectors of the mass matrix.

Let us assume that the matrix M7, is diagonalizable (for full treatment see the
preprint). The solution is given by

@ Mo

P — 'Da(ﬁ) E(ﬁ) (P—l)((s,)yk’y ’

(9)

where the radius dependence is encoded in the matrix

B _ (ovIND g s(8)
E = (e )(6)—e a6

Ar

M. Hohmann, L. Jarv, P. Kuusk, E. Randla, O. Vilson PPN ~ for MSTG



Sources

Asymptotics

Perturbations

Equations for perturbed variables
Solutions

Parametrized Post-Newtonian approximation

Geometric interpretation

@ The equation for the scalar field
2(2) @)
Vo7 = M7 0%+ k7p,

where k7 = K7|p and the components of the “mass matrix" are

U
v B
M [ a 8¢56¢a]

(2)
@ The equation for hgg
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(2
@ The equation for hj

(2)
v? <hj N

@ K2
Foligen | ® ) = TR P
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@ The equation for the scalar field
2(2) 2
VeoT = M7 0% + k7p,
where k7 = K7|p and the components of the “mass matrix" are
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Geometric interpretation

The perturbed spacetime metric is taken to be a perturbed Minkowski metric

uv = Nuv + hw/-

Only the metric components of order O(2), written as
@
hoo = 2 Gest Un(r),
()

h,‘j =2 Gcﬂ"\/UN(r) 5,‘],

are relevant for the calculation of the PPN parameter . Here G is the effective
gravitational constant and Uy/(r) = % is the Newtonian gravitational potential
which depends on the distance from the source point mass.

Also the perturbed scalar field is given as
(0) ()
Y (xH) = Y 4 d¥(xH).

When writing down the equations for perturbed variables we take into account
that the time derivatives are weighted with an additional velocity order O(1).
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Mo

F(r) = _4Fg [

Let us recall the form of metric perturbations

o B) —1\(8
kaP? () E Gy (P

(2

@ M M
hOO:2GeHTov hij=2GefWTO5ij,
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F(r) = _4Fg [

Let us recall the form of metric perturbations

o B) —1\(8
kaP? () E Gy (P

(2

(2 M, M
h00:2GeﬁfTo, hU:2Geff’}/TO(SU,
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Mo

F(r) = _4Fg [

Let us recall the form of metric perturbations

o B) —1\(8
ka P2 ) EVD (P71 W}

(2

@ M M,
hOO:2GeHTov hij:2Geff'Y705ija

Hence
B K2 1+ r(r)
~ 8nFo (1=1(r) 1o r(r)
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Let us recall the form of metric perturbations

(2) M, (2 M,
hOO:2GeHTov hij:2Geff'Y705ija
Hence ) B
K 1+T1(r
g LT TTIoT()

Geff

For general relativity v = 1.
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Let us recall the form of metric perturbations
) M, ) M,
h00:2GeﬂTo, hU:2Geff’}/TO(SU,
Hence ) B
K 1+10(r

Geff

For general relativity v = 1.
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The radius dependent part in both Geg and v, namely

a (8) —15\(§
kaP® () E" (5 (P DK

seems rather complicated, but if the “mass matrix” is diagonalizable, then it has a nice
geometric interpretation.
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2(2) (2)a
V20T = MY, + K7p,

It is easier to integrate the scalar field equation when the mass matrix is turned
into its Jordan normal form, J(ﬁzé) = (P_l)(ﬁ)ﬁ,,/\/lA’aP”'(é). Here the similarity
matrix P is constructed from the components of the eigenvectors or generalized
eigenvectors of the mass matrix.

Let us assume that the matrix M7, is diagonalizable (for full treatment see the
preprint). The solution is given by

@ Mo

P — Pa([j) E(ﬁ) (P—l)((s’)yk’y ,

(9)

where the radius dependence is encoded in the matrix

® _ (—vi® L (8)
E = (e )(6)fe a6

Ar
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Parametrized Post-Newtonian approximation

The radius dependent part in both Geg and v, namely
—1\(6
(P D],
seems rather complicated, but if the “mass matrix” is diagonalizable, then it has a nice

geometric interpretation.

« _ le' o2 Y B) _ —ﬂr(ﬁ)_—mr(ﬁ
Pl =" Mo =miygy,  EQy=(en7)" =iy,
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The radius dependent part in both Geg and v, namely
4R
rr)=-=2|

seems rather complicated, but if the “mass matrix” is diagonalizable, then it has a nice
geometric interpretation.

o (8) —1y(é
ka P2 ) EV (P71 Uﬂ}

B
) = (e—ﬂr)( " 59

« _ « 2
Ploy=vie M av"e) = migYs): 0 . @

The deviation term can now be unrevealed as

2
r( ) 4f0 ’k‘2ZCOS 6))e—m[5]r7

where the scalar product of the mass matrix eigenvector, v(s), and the vector of
nonminimal coupling in spatial asymptotics, k, has been written in terms of the angle
U5y between them.
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Conclusions

14 1(r) K 4]-"3 o
=T = - = g
Ty R e R RN [kl* Z cos® (U (g))e "

@ General relativity predicts v = 1 which is in good agreement with experiment.
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@ General relativity predicts v = 1 which is in good agreement with experiment.
@ For a multiscalar-tensor theory therefore we must have

r(r)—0.
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14 1(r) K 4]-"3 ) o
=T = - = 15
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@ General relativity predicts v = 1 which is in good agreement with experiment.
@ For a multiscalar-tensor theory therefore we must have

r(r) —0.
@ This can be achieved by sufficiently massive scalar fields (ms) — o0), which is
intuitively clear, because massive field means short range interaction or form

particle physics viewpoint, the scalar particle mediating gravity decays before
reaching its destination.
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Conclusions

14+(r) K 4]-'3 ) o
11 = - = E (0]
1_ r(r) ) Geﬂ 87Tf0 (1 r(r)) s r( ) |k| COS ?9(5) .

General relativity predicts v = 1 which is in good agreement with experiment.
For a multiscalar-tensor theory therefore we must have

r(r)—0.

This can be achieved by sufficiently massive scalar fields (m5) — o0), which is
intuitively clear, because massive field means short range interaction or form
particle physics viewpoint, the scalar particle mediating gravity decays before
reaching its destination.

The effect of less massive fields can be diminished, if the corresponding basis
vectors are taken to be perpendicular (J(5) — 7/2) to the non-minimal coupling
vector k.
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General relativity predicts v = 1 which is in good agreement with experiment.
For a multiscalar-tensor theory therefore we must have

r(r)—0.

This can be achieved by sufficiently massive scalar fields (m5) — o0), which is
intuitively clear, because massive field means short range interaction or form
particle physics viewpoint, the scalar particle mediating gravity decays before
reaching its destination.

The effect of less massive fields can be diminished, if the corresponding basis
vectors are taken to be perpendicular (J(5) — 7/2) to the non-minimal coupling
vector k.

Third option is to reduce the length of the nonminimal coupling vector, i.e.

k> — 0.
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