Post-Newtonian-accurate regularized SMBH dynamics in galaxy simulations

<u>Antti Rantala</u>, Pauli Pihajoki, Peter H. Johansson (1) Thorsten Naab et al. (2)

Theoretical Extragalactic Group, Helsinki
MPA Garching, Germany

TT2016

From galaxy mergers to GW coalescence

Evolutionary phase	Distance scale (approx	kimate)
Galaxies in group/cluster environment	1 kpc – 1 Mpc	
Galaxy mergers	0.1 kpc – 100 kpc	Tree-gravity/hydro codes
Dynamical friction	10 pc – 1 kpc	Direct summation codes
Binary hardening by three-body scatterings	0.01 pc - 10 pc	
GW emission, SMBH merger	AU scale – 0.01 pc	Few-body PN codes

From galaxy mergers to GW coalescence

Evolutionary phase	Distance scale (approximate)	
Galaxies in group/cluster environment	1 kpc – 1 Mpc	
Galaxy mergers	0.1 kpc – 100 kpc	Tree-gravity/hydro codes
Dynamical friction	10 pc – 1 kpc	Direct summation codes
Binary hardening by three-body scatterings	0.01 pc – 10 pc	
GW emission, SMBH merger	AU scale – 0.01 pc	Few-body PN codes

Simulating Newtonian gravity: tree algorithms

N = particle number

- $\sim \log(N)$ force evaluations per particle
- PM methods also possible for large separations
- Equations of motion integrated with a leapfrog algorithm
- Very large simulations possible
- Example codes: different GADGET versions

1

 $\frac{1}{|\mathbf{y}+\mathbf{s}-\mathbf{x}_i|} = \frac{1}{|\mathbf{y}|} - \frac{\mathbf{y} \cdot (\mathbf{s}-\mathbf{x}_i)}{|\mathbf{y}|^3} + \frac{1}{2} \frac{\mathbf{y}^T \left[3(\mathbf{s}-\mathbf{x}_i)(\mathbf{s}-\mathbf{x}_i)^T - \mathbf{I}(\mathbf{s}-\mathbf{x}_i)^2\right] \mathbf{y}}{|\mathbf{v}|^5} + \dots$

$$\Phi(\mathbf{r}) = -G\sum_{i} \frac{m_i}{|\mathbf{r} - \mathbf{x}_i|}$$

We expand:

$$\frac{1}{|\mathbf{r} - \mathbf{x}_i|} = \frac{1}{|(\mathbf{r} - \mathbf{s}) - (\mathbf{x}_i - \mathbf{s})|}$$

for
$$|\mathbf{x}_i - \mathbf{s}| \ll |\mathbf{r} - \mathbf{s}|$$
 $\mathbf{y} \equiv \mathbf{r} - \mathbf{s}$

and obtain:

Springel (2006)

Simulating Newtonian gravity: direct summation codes

- N force evaluations per particle
- Typically using very accurate high-order integrators
- Neighbour schemes possible to reduce the number of force computations
- Small softening or special handling of close encounters
- Special computer hardware or GPUs
- Maximum particle number ${\sim}10^6$
- Example codes: NBODY 1-7, GRAPE codes

Gravitational N-Body Simulations

Tools and Algorithms

SVERRE J. AARSETH

CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

Simulating Newtonian gravity: numerical issues

Point-like simulation particles: $F(r) = -\frac{GMm}{r^2} \rightarrow -\infty as r \rightarrow 0.$

Also: two-body relaxation timescale boosted by low resolution

Solutions:

1) Softening:
$$F(r) = -\frac{GMm}{(r+\epsilon)^2} \rightarrow -\frac{GMm}{\epsilon^2} as r \rightarrow 0.$$

- The softening length $\boldsymbol{\epsilon}$ is the resolution limit of the simulation.
- 2) **Regularization**: transform the equations of motion so that the problem vanishes.
- Levi-Civita, Kustaanheimo-Stiefel methods, algorithmic chain regularization
- Typically possible only for a small number of particles

KETJU: regularized SMBH dynamics in Gadget-3

Gadget-3:

- Softened Newtonian gravity with TreePM algorithm
- Gas dynamics using a modern Smoothed Particle Hydrodynamics
- Sub-resolution star-formation, stellar feedback, SMBH accretion+feedback, metals, metal-dependent cooling...

KETJU:

- A regularized volume around the SMBHs
- Accurate, non-softened dynamics
- Post-Newtonian corrections up to PN3.5, optional spin- dependent terms and their cross terms
- PN approximation accurate down to approximatively 10 Schwarszchild radii of the SMBHs

KETJU (Finnish): A chain

Algorithmic Chain Regularization (ARCHAIN)

- The equations of motion are time-transformed. Together with a leapfrop integrator, this regularizes the system against Newtonian force divergences.
- Chain: the usage of chained inter-particle vectors significantly reduces the round-off error.
- Bulirsch-Stoer extrapolation method to formally extrapolate dt → 0. This corresponds to taking a large number of substeps during one Gadget-3 timestep.
- Error in dynamical variables of the chain particles can be pushed down to machine precision.

Define $t \mapsto s$ by $ds = \left[\alpha(T+B) + \beta\omega + \gamma\right]dt$ $= (\alpha U + \beta \Omega + \gamma) dt,$ where $\alpha, \beta, \gamma \in \mathbb{R}$, and $T = \sum_{i=1}^{n} \frac{1}{2} m_i \|\vec{v}_i\|^2 \quad \text{kinetic energy},$ $U = \sum_{i} \sum_{j>i} \frac{Gm_i m_j}{\|\vec{r}_{ij}\|} \quad \text{force function,}$ B = -T + U binding energy, $\Omega =$ arbitrary function of $\vec{r_i}$, $\dot{\omega} = \sum_{i} \nabla_{\vec{r}_i} \Omega \cdot \vec{v}_i.$

Chain subsystems in Gadget-3

Chain particles

SMBHs and stars inside the influence radius.

• Tree particles

Ordinary Gadget-3 particles.

• Perturber particles

Tree particles strongly perturbing a chain subsystem. User-defined parameter lambda and gamma set the amount of chain and perturber particles.

Chain & Tree memberships updated every timestep

Comparing KETJU to ordinary Gadget-3 and NBODY7

sphere

GBS-tol = Bulirsch-Stoer integrator accuracy

Realistic SMBH merger timescales Gadget-3 – like codes The original Gadget-3 merger

Ongoing work: dry mergers and resolution effects in hardening rates

Khan et al. 2011: SMBH binary hardening rate independent of particle mass as torques from the merger fill the loss cone faster than 2-body relaxation does \rightarrow low-res results generally valid?

Hardening rate =

Our work:

- Check the validity of this claim at higher resolutions
- How about the DM halo or _ merger geometry etc...?

Hardening rates continued...

Summary

- We have developed KETJU, a regularized dynamics module for Gadget-3.
- Resolution effects properly studied.
- More accurate SMBH merger timescale estimates.
- Next step: regularized simulations with full Gadget hydrodynamics + feedback