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Abstract. We review some modern applications of the theory of few-
body encounters between binaries and single stars. In particular we focus
on the treatment of adiabatic encounters, in a regime which is of im-
portance in encounters between a star and a planetary system in a star
cluster.

1. Introduction: examples and applications

Roughly speaking, gravitational scattering will be defined as the study of few-
body encounters in which particles interact by Newtonian gravity, with certain
types of initial conditions; namely, a few (normally two or three) bound subsys-
tems, such as single stars or binaries, approach from infinity. Then the problem
is to characterise the outcome, usually in a statistical sense.

The new book by Valtonen & Karttunen (2006) will very quickly become the
standard reference on this problem. While approximate analytical methods yield
useful results in some limiting situations (see, for example, Sec.2.), computer
simulation is an essential tool. And while efficient codes exist for computing
individual scattering encounters (e.g. triple1, fewbody2) the scattering packages
in starlab3 provide the additional, extremely valuable functionality of efficiently
sampling parameter space. Many possibilities exist for graphic rendering of
individual encounters, such as GLanim4.

1.1. Examples and applications

Though the topic was developed throughout the twentieth century, it remains
topical, because of fresh applications, such as the following:

Scattering of normal stars by a binary black hole As a result of mergers, cen-
tral binary black holes are expected in many galaxies. Observationally, binary
black holes are studied at high energies (e.g. NGC 6240, studied with Chandra:
Komossa et al 2003) and at visual wavelengths (e.g. the famous Tuorla object
OJ287: Sillanpää et al 1988). A problem of long standing is the evolution of

1http://www.ast.cam.ac.uk/∼sverre/web/pages/nbody.htm
2http://www.astro.northwestern.edu/∼fregeau/code/fewbody/
3http://www.ids.ias.edu/∼starlab/
4http://grape.astron.s.u-tokyo.ac.jp/∼makino/softwares/GLanim/
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the relative orbit of the black holes, as they scatter stars from the surrounding
galaxy (Hills 1983, Gould 1991b, Mikkola & Valtonen 1992, Fukushige et al 1992,
Quinlan 1996, Zier & Biermann 2001, Merritt 2001, 2002, Yu & Tremaine 2003,
Milosavljević & Merritt 2003, Chatterjee et al 2003, Gualandris et al 2005).

Evolution of planetary systems in star clusters For the solar system, though
it is not now in a star cluster, the question of stellar perturbations has been
considered for a long time (e.g. Lyttleton & Yabushita 1965). In recent years
this question has arisen because of the initially surprising absence of planets
(searched for photometrically) in star clusters (e.g. the globular star cluster 47
Tuc; see Gilliland et al 2000, Weldrake et al 2005). From the theoretical point
of view the study of such scattering is simplified by the fact that one component
of the participating binary is effectively massless (Davies & Sigurdsson 2001,
Spurzem et al 2003, Fregeau et al 2006). We shall say more about this in Sec. 2.

Capture of exotic particles by multiple systems The idea here is that the flux
caused by interactions with normal matter may be enhanced in situations where
the particles can be trapped gravitationally, which allows them multiple op-
portunities of interacting. This is a more speculative problem, but has still
attracted considerable interest (Press & Spergel 1985, Gould 1987, 1988, 1991a,
Damour & Krauss 1998, 1999, Gould & Alam 2001, Lundberg & Edsjö 2004).
Theoretically it is the case where the incoming particle is nearly massless. The
complexity of the problem is illustrated by a comparable problem of solar system
dynamics: what fraction of comets and asteroids are destroyed by colliding with
the sun? Several planetary resonances are involved in the fact that almost half
of a sample of near-Earth asteroids end by colliding with the sun (Farinella et
al 1994). It is also a common fate of short-period comets (Levison & Duncan
1994).

The M4 triple The nearby globular cluster M4 contains a triple system in which
a distant companion, of mass comparable with or somewhat larger than Jupiter’s
mass, is in orbit about a binary consisting of a white dwarf and a millisecond
pulsar. It is likely to have formed in a four-body scattering encounter between
two binaries (Rasio et al 1995, Ford et al 2000, Fregeau et al 2006).

2. Adiabatic encounters

Consider a three-body scattering event involving a binary, with components
of mass m1,m2, and a third single star of mass m3. In this section we shall
be concerned with situations where the encounter is both tidal and adiabatic.
Let the (initial) semi-major axis of the binary be a, and v the typical relative
velocity of the components. Then we shall estimate v2 ∼ GM12/a, as in a
circular orbit, where M12 = m1 + m2. Let the relative speed of the star and
the binary, when far apart, be Vinf , and let q be the distance of closest approach
between them. Taking a Keplerian approximation for their relative motion,

we see that, at close approach, their relative speed is V 2 = V 2
inf +

2GM123

q
,

where M123 = m1 + m2 + m3, while the eccentricity of their relative motion is
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e′ = 1 +
qV 2

inf

GM123
. By plotting the curves e′ = 2, V/q = v/a (using the foregoing

estimates) and q = a we distinguish those encounters which are near-parabolic,
adiabatic and tidal, respectively (Fig.1).
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Figure 1. Regimes of tidal, adiabatic and hyperbolic encounters. En-
counters to the right of the vertical line are tidal. These curves have
been sketched for the case of equal masses, but do not depend sensi-
tively on the masses unless m3 is very large. Vinf is plotted in units of√

GM123/a.

Scattering problems like this can be approached analytically in various lim-
iting regimes. High up in the diagram are non-adiabatic, impulsive encounters,
which cover most situations involving “soft” binaries. At the bottom, just above
the horizontal axis, in the tidal regime, are near-parabolic, adiabatic encounters.
A theoretical study of encounters in this regime was carried out by Roy & Had-
dow (2003), who gave explicit formulae for the change in energy of the binary
during the encounter. Heggie & Rasio (1996) had done a similar job for the
change in eccentricity of the binary, and had actually extended their result to
the regime of hyperbolic, adiabatic encounters. This regime is important for
one of the problems mentioned earlier (Sec.1.1.), viz. the evolution of planetary
systems in star clusters, where typical values of Vinf are comparable with the
orbital velocity of a planet at a few AU. The main purpose of the present section
is to extend the principal result of Roy & Haddow to this regime.

Using first-order perturbation theory, and truncating the perturbing poten-
tial between the binary and m3 at quadrupole order, Roy & Haddow show that
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the change in energy of the binary is

δε = −Gm1m2m3

M12

∫ ∞

−∞
Ṙ.

∂R
∂R

dt, (1)

where t is time, R is the position vector of m3 relative to the barycentre of the
binary, and R is the perturbing function. In turn, this can be taken to be of the
form

R =
1

R5

{[
3
2
e1a

2(â.R)2 − 3
2
e2b

2(b̂.R)2 − 1
2
ee3a

2R2
]
cosM + 3e4abâ.Rb̂.R sinM

}
,

(2)
where a, b, e are, respectively, the semi-major axis, the semi-minor axis and
eccentricity of the binary, â, b̂ are unit vectors along the axes of the orbit of the
binary, M is the mean anomaly of the binary, and the remaining coefficients are
defined to be

e1 = J−1(e)− 2eJ0(e) + 2eJ2(e)− J3(e)
e2 = J−1(e)− J3(e)
e3 = eJ−1(e)− 2J0(e) + 2J2(e)− eJ3(e)
e4 = J−1(e)− eJ0(e)− eJ2(e) + J3(e),

in which Jn is the Bessel function of the first kind of order n.
Roy & Haddow proceed to use formulae for parabolic motion for R. We

follow their same procedure using formulae for hyperbolic motion (e.g. Plummer
1918), i.e.

R = a′(e′ − coshF )Â + b′ sinhF B̂ (3)
R = a′(e′ coshF − 1), (4)

where Â, B̂ are unit vectors aligned with the axes of the hyperbolic relative orbit
of m3, a′, b′, e′ are the hyperbolic analogues of a, b, e for this orbit, and F is the
eccentric anomaly, related to time by

n′t = e′ sinhF − F, (5)

in which
n′2a′3 = GM123 (6)

and we have assumed t = 0 at the time of closest approach. We also have
cosM = < exp(in(t − t0)), where t0 is the time of pericentric passage in the
binary, and n2a3 = GM12.

From Eqs.(1) and (2), we see that a typical term in the integrand of δε is

Ṙ· ∂

∂R

(
(â ·R)2

R5

)
cosM = <

(
2â ·Râ ·R∗R− 5(â ·R)2R∗

R6
Ḟ exp(in(t− t0))

)
,

(7)
where ∗ denotes differentiation with respect to F . Indeed all the terms in Eq.(1)
can be expressed in terms of the integral

I =
∫ ∞

−∞
f(F )Ḟ

R6
exp(in(t− t0))dt,
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where f is a polynomial in coshF and sinhF . By means of Eq.(5), we then have

I = exp(−int0)
∫ ∞

−∞
f(F )
R6

exp
{

i
n(e′ sinhF − F )

n′

}
dF. (8)
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Figure 2. The modulus of the integrand of Eq.(8) in the region −1 <
<F < 1, 0 < =F < 2 of the complex F -plane, for the case e′ ' 1.
Essentially the shape is that of a saddle, interrupted by a pole near
F = i.

We handle this integral in the same way as in Heggie & Rasio (1996).
Basically the method is steepest descents, but at the location of the saddle of
the exponent, it turns out that R = 0. (This is responsible for the pole at
about F = i in Fig.(2).) First, therefore, we clear off the factors of R in the
denominator. We deform the contour off the real F -axis to avoid the singularity
at F = 0 in the following equivalent expression:

I = exp(−int0)
∫ ∞

−∞
f(F )R∗

a′e′ sinhFR6
exp

{
i
n(e′ sinhF − F )

n′

}
dF,

where we have used the derivative of Eq.(4). Integrating by parts we can convert
R∗/R6 into 1/(5R5), and in differentiating the remainder of the integrand we can
treat everything except the exponential as constant: the adiabatic assumption
implies that n/n′ À 1, and so the derivative of the exponential factor dominates.
Thus we have approximately

I = exp(−int0)
1
5

in

n′a′2e′

∫ ∞

−∞
f(F )
sinhF

1
R4

exp
{

i
n(e′ sinhF − F )

n′

}
dF,
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where we have made use of Eq.(4) again. Doing this twice more gives the
approximate result

I = exp(−int0)
1

1.3.5

(
in

n′a′2e′

)3 ∫ ∞

−∞
f(F )

sinh3 F
exp

{
i
n(e′ sinhF − F )

n′

}
dF. (9)

Now we deform the contour onto the saddle of the exponent, which occurs
where its derivative vanishes, i.e. e′ coshF − 1 = 0. We choose the root F0 =
i arccos(1/e′), which leads to

sinhF0 = i

√
1− 1

e′2
, coshF0 =

1
e′

. (10)

A quadratic approximation of the exponent around F = F0 gives

i
n

n′
(e′ sinhF − F ) ' − n

n′

{√
e′2 − 1− arccos(1/e′) +

1
2

√
e′2 − 1(F − F0)2

}
.

Now the integral in Eq.(9) is easy, and gives

I = exp(−int0)
1

1.3.5

(
in

n′a′2e′

)3
√

2πn′

n
(e′2 − 1)−1/4 f(F0)

sinh3 F0
×

× exp
(
− n

n′
(
√

e′2 − 1− arccos(1/e′))
)

.

Since f(F ) is defined implicitly in terms of R, R and their derivatives (cf.
Eq.(7)), it is helpful to know that, when F = F0, we have R = a′(e′− 1/e′)(Â+
iB̂), R = 0,R∗ = a′

√
1− 1/e′2(−iÂ + B̂) and R∗ = ia′

√
e′2 − 1, where we have

used Eqs.(3),(4) and (10), and the fact that b′ = a′
√

e′2 − 1. (The fact that
R = 0 at the saddle is the reason for the three integrations by parts.)

Now we see that the integral (with respect to t) of Eq.(7) is approximately

< exp(−int0)
i
√

2π(e′2 − 1)3/4

15a′3e′2

(
n

n′

)5/2

(−5)(â.Â + iâ.B̂)2 ×

× exp
(
− n

n′
(
√

e′2 − 1− arccos(1/e′))
)

.

We use Eq.(6) and the corresponding relation for the binary to eliminate n and
n′, and eliminate a′ in favour of the distance of closest approach, q. Thus the
contribution of this term to δε in Eq.(1) is

−Gm1m2m3M
1/4
12

M
5/4
123

√
2π

10
(e′ + 1)3/4

e′2
q3/4

a7/4
(−5e1)

{
((â.Â)2 − (â.B̂)2) sinnt0−

−2â.Ââ.B̂ cosnt0
}

exp


−

(
M12q

3

M123a3

)1/2 √
e′2 − 1− arccos(1/e′)

(e′ − 1)3/2


 .
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For ease of comparison, and a little economy, we introduce K =

√
2M12q3

M123a3
, and

so this contribution to δε is

−Gm1m2m3

M12q3

√
π

10
(e′ + 1)3/4

23/4e′2
K5/2(−5e1a

2)
{
((â.Â)2 − (â.B̂)2) sinnt0−

−2â.Ââ.B̂ cosnt0
}

exp

(
− K√

2

√
e′2 − 1− arccos(1/e′)

(e′ − 1)3/2

)
.

This is identical with the result of the corresponding terms in Roy & Haddow
(the unnumbered equation below their Eq.(17)), except for the factor involving
e′, and the exponent. In the limit e′ → 1 the results are in agreement.

We can obtain a more convenient final expression by making the same
changes to Eq.(19) in Roy & Haddow, yielding

δε = −Gm1m2m3

M12q3

√
π

8
(e′ + 1)3/4

23/4e′2
K5/2 exp

(
− K√

2

√
e′2 − 1− arccos(1/e′)

(e′ − 1)3/2

)
×

×
{
e1a

2[sin(2ω + nt0)(cos 2i− 1)− sin(2ω + nt0) cos 2i cos 2Ω−
−3 sin(2ω + nt0) cos 2Ω− 4 sin 2Ω cos(2ω + nt0) cos i] +
+e2b

2[sin(2ω + nt0)(1− cos 2i)− sin(2ω + nt0) cos 2i cos 2Ω−
−3 sin(2ω + nt0) cos 2Ω− 4 cos(2ω + nt0) sin 2Ω cos i] +
+e4ab[−2 cos 2i cos(2ω + nt0) sin 2Ω− 6 cos(2ω + nt0) sin 2Ω−
−8 cos 2Ω sin(2ω + nt0) cos i]} , (11)

where ω, Ω and i describe the orientation of the path of m3 in a frame aligned
with the elliptical orbit of the binary. Thus Ω is the longitude of the ascending
node, measured in the plane of the binary from its pericentre in the direction of
its motion.

It would be desirable to test this formula numerically. So far the only tests
to have been carried out involve qualitative comparison of scatter plots produced
using both this formula and numerical scattering experiments. One reason why
such a comparison is desirable is the cavalier nature of the perturbation calcu-
lation we have carried out. In particular the end result is exponentially small
in the ratio a/q, whereas we have neglected terms which are only algebraically
small (e.g. higher order terms omitted in Eq.(2)). Nevertheless the correspond-
ing result for e′ = 1 works well (Roy & Haddow 2003). Finally we remark that
Eq.(11) gives a null result when e = 0. Roy & Haddow show how to deal with
this when the encounter is parabolic, and it is expected that a result for the
general case could be provided along the lines of the above calculation.
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