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Abstract. The planar three-body problem with zero initial velocities is
systematically studied as the Free-Fall Problem (FFP). We define a new
problem with non-zero initial velocity, as an extension of the FFP.

1. Introduction and motivation

The three-body problem with zero initial velocities is called the free-fall prob-
lem (FFP), and has been extensively studied by Russian and Japanese schools
(Agekyan and Anosova, 1968, Anosova 1986, Tanikawa, 1995, Tanikawa, 2000).
In the present report, we extend the problem to systematically include the initial
velocities.

In the free-fall three-body problem, the initial value space is finite because
of the similarity of the configuration, and we can study the property of the
structure of the initial value space in this finite region. However, it is more
desirable to put the problem into a wider scope, that is, the problem should be
considered in the full, planar phase space. In full phase space, the FFP occupies
a low dimensional manifold. We want to somehow ‘blow up’ this manifold by
adding velocities to the problem.

The aim of our project is to investigate the structure of the equal mass
planar three-body problem. The purpose of the present report is to make clear
what is useful for our aim. Our attempt has been partially successful.

2. The Free-Fall Problem

The FFP is a planar problem. The total energy of the three bodies mi, i = 1, 2, 3
is negative and their angular momentum is zero. We consider the equal mass
case: m1 = m2 = m3. In this problem, motions starting from similar triangles
transform into one another under appropriate changes of coordinate and time,
so we identify these motions. Dissimilar triangles correspond to independent
motions.

Let mass points m2 and m3 start at rest at A(−0.5, 0.0) and B(+0.5, 0.0),
respectively in the (x, y) plane and m1 start at rest at a point P (x, y) where
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(x, y) ∈ {(x, y) : x ≥ 0, y ≥ 0, (x + 0.5)2 + y2 ≤ 1}. (1)

If m1 changes position in D, then triangles satisfying the condition AB ≥
PA ≥ PB are exhausted. Conversely, any triangle is similar to one of the
triangles formed by three mass points m1,m2,m3 as above. Thus the positions
of P ∈ D specify all possible initial conditions in FFP.

3. New initial condition 1 (angular momentum)

An attempt to include initial velocity was numerically carried out by Anosova,
Bertov and Orlov (1984). One of their interesting observations is the angular
momentum effect on the motion of triple systems. The angular momentum
seems to make systems stable. A systematic study of angular momentum effects
is important, and our project has started with such a motivation.

Anosova et al. (1984) considered the region D of the free-fall problem.
They supposed that the system rotates in the plane of the initial triangle (2D
problem) counterclockwise; the velocity vectors of components A (the distant
component) and C (inside D) are orthogonal to their radius-vectors in the center-
of-mass coordinate system; the angular momenta of these bodies are the same;
the velocity of component B is given so that the center-of-mass of the triple
system is motionless; the speed of rotation is parameterized by the initial virial
ratio k. Thus, the initial conditions are defined by three parameters: coordinates
(x, y) of the C component in region D and the virial ratio k.

However, their formulation loses the boundedness of the initial configuration
space. This boundedness is one of the most important properties of the FFP.
So the first thing we should do is recover the boundedness.

Figure 1. The initial map
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(x + 0.5)2 + y2 = 1.0(x− 0.5)2 + y2 = 1.0

Any given triangular configuration will lie in one of twelve regions (Fig.1)
in the FFP. However if we give the triangle tips arbitrary velocities, the initial
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conditions may no longer be similar, and we must carefully choose our conditions.
Our set of initial conditions is very similar to those of Anosova et al. (1984),
except that velocities are given in a different way. The position of m2 and m3

are the same as in the FFP. We put m1 at any place in the (x, y) plane. The
conditions satisfied by the the initial velocities are:

1) each velocity vector is normal to the corresponding position vector from the
gravity center,

2) the sum of the velocity vectors is zero,

3) the ratio between total kinetic energy and total potential energy is constant,
i.e., the virial ratio is constant.

Following from the similarity transformation, we can classify twelve regions
in the initial value space to two groups as follows.

1; D11, D13, D22, D31, D33, D42,
2; D12, D21, D23, D32, D41, D43.

Thus we need only consider D11 and D12 without loss of generality. In our defi-
nition, the initial condition space becomes compact and all the velocity vectors
made by these conditions contribute to the angular momentum.

4. New initial condition 2 (time derivative of inertia moment)

There is another direction of extension of the FFP. The conditions introduced
here are similar to the conditions of section §3. We only modify condition (1) of
the former section to

1′) Each velocity vector is parallel to the corresponding position vector from
the gravity center.

The classification of regions is the same as in the former case. This ini-
tial condition is independent of the one in §3, because all the velocity vectors
contribute to the time derivative of the inertia moment, and the total angular
moment is zero.

5. Discussion

In this report, we extend the Free-Fall Problem in two directions. The first is
to give the system angular momentum, and the second is to give the system a
time derivative of the inertia moment.

Now we discuss the direction of research to which we intend to proceed.
The number of variables of the planar three-body problem is twelve. We know
that there are 6 integrals of motion for the planar three-body problem: namely
the four integrals of motion of the center of gravity, the integral of angular
momentum, and the integral of energy. By using these quantities, we can reduce
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the degree of freedom of this system to three. Correspondingly we need to
consider the six-dimensional phase space. It is very difficult to consider the
whole structure of six-dimensional phase space, but when we set the masses to
be equal, then from the results of this report, we find two independent directions
in this six-dimensional phase space. For the moment, we are not successful in
finding another independent direction. If we are to be successful, then we will
have a five-dimensional surface of section comprising the (x, y) plane and three
independent directions in the six-dimensional phase space.

Additionally, if the virial ratio is very large and the total energy of the
system is of high positive value, then the type of final motion is rather simple
in the initial value space. So to learn the qualitative behaviour, we may only
consider finite values of the virial ratio. This is very useful for the computer
simulations we are starting. The results of the simulations will be reported in
the near future.

Finally we summarize our plans for future work;

1) To find the remaining independent direction in phase space;

2) To prove that the axis found makes the ‘global’ surface of section;

3) To study the precise structure in the five dimensional ‘global’ surface of
section.

References

Agekyan, T.A. and Anosova, J.P. 1968, Soviet Physics-Astronomy, 11, 1006-
1014.

Anosova, J.P. 1986, Astrophysics and Space Science, 124, 217-241
Anosova, J.P., Orlov, V.V.. 1984, Astrofizika, 20, 327 (Astrophysics, 20, 177)
Tanikawa, K., Umehara, H. and Abe, H. 1995, Celest. Mech. Dynam. Astron,

62, 335-362
Tanikawa, K. 2000, Celest. Mech. Dynam. Astro, 76, 157-185


