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Abstract.
We have studied the behaviour of the periodic orbits in the rectilinear

three-body system, bifurcated from the Schubart region, by varying the
mass parameter. We find that the periodic points with rotation number
(n− 2)/n dominate the structure on the Poincaré section.

1. Introduction

We study the structure on the Poincaré section in the rectilinear three-body sys-
tem, continuing with our preceding work (Saito & Tanikawa, submitted; here-
after Paper I). In Paper I, we studied how the structures on the Poincaré section
change as the central mass varies. The Poincaré section has the following hierar-
chical structure: the Schubart orbit, its stable region, an outer chaotic scattering
region composed of arch shaped blocks, and a yet-more-distant region of fast es-
cape. Although it had already been shown by Hietarinta and Mikkola (1993)
that the number of arches increases as the central body becomes lighter, the
improvement in our study was to reveal that a new arch is created by a lot of
‘germ’ shaped blocks, bifurcated from the arches using the symbolic sequence,
which was applied for the equal mass case by Tanikawa and Mikkola (2000).
The aim of this paper is to study how these ‘germs’ are related to the periodic
orbit.

2. Method

2.1. Setting of the Problem

In the rectilinear three-body system, three particles run on a line and are mu-
tually attracted by the Newtonian force. We denote the masses of the three
particles by m1,m0, and m2 (from the left), and the mutual distances m1m0

and m0m2 by q1 and q2. Taking (q1, q2) as coordinates and introducing their
conjugate momenta (p1, p2), we have the Hamiltonian and the equation of the
motion:
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qi = ∂H/∂pi, pi = −∂H/∂qi (2)

We consider the case H(q, p) = E = −1 < 0 and symmetric mass config-
uration, since we found that structure on the Poincaré section is less sensitive
to asymmetry of the mass ratio. We express the mass ratio using the mass
parameter a as m1 = m2 = 1− a and m0 = 1 + 2a.

2.2. Poincaré Section

We use the Poincaré map as originally introduced by Mikkola and Hietarinta in
order to study the structure in phase space (for the properties of this Poincaré
map, see Hietarinta & Mikkola, 1993). This Poincaré section is defined by
q1 = Λq2 with the parameter Λ depending only on masses m1, m0 and m2

(under the constraint H(q, p) = −1). We then introduce the coordinates (θ, R)
defined by the following:

R = 1
2(q1 + q2)|q1=Λq2 , θ = arctan
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where 0◦ 5 θ 5 360◦, 0 5 R 5 Rmax,

A = m1(m0+m2)
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2M , C = m2m0
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.

The boundaries R = 0, Rmax correspond to triple collision and the case
q̇1 = q̇2 = 0, respectively. We divide the Poincaré section into the side Π with
θ 5 180◦ and the side Π∗ with θ = 180◦. We then define the Poincaré map
x′ = T (x) with x, x′ ∈ Π, where the orbit integrated from x intersect at x′ with
Π at the next intersection.

2.3. Symbolic Sequence

Tanikawa and Hietarinta (2000) described the behaviour of particles using sym-
bolic sequences instead of the orbit itself. A symbolic sequence is sequence of
symbols corresponding to collisions experienced during the orbit. Here, the sym-
bols are ‘0’ (for a triple collision), ‘1’ (for a collision between m1 and m0), or
‘2’(for a collision between m0 and m2).

In Paper I, we introduced cylinders (sets of symbolic sequences) for this
symbol sequence. The definition of this cylinder is the following:

Sc,j ≡
{ {(21)i(2)j · · · |i ≥ 0, j ≥ 1} (if c = 2i + 1)
{(21)i(1)j · · · |i ≥ 1, j ≥ 1} (if c = 2i) , Sc ≡ ∪j<∞Sc,j . (4)

In particular, the Schubart orbit and its stable region has the symbol se-
quence (21)∞ ∈ S∞. In Paper I, for the orbits starting from 500 × 300 grid
points on Π, we calculate the symbolic sequence. We then partitioned Π into
regions such that a region has a number c0 and the symbolic sequences of all
points in this region belong to Sc0 .
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2.4. Rotation Number

The intersection Π of the Schubart orbit with Π is the fixed point of the Poincaré
map T , namely P0 = T (P0). The rotation number is a quantity which describes
the rotational motion under T , when P0 is stable. First, we introduce polar
coordinates (D, A) whose origin is at P0 = (θ0, R0):

D cosA = θ − θ0, D sinA = 100(R−R0)/Rmax. (5)

We then define the rotation number α∞(D, A) at (D, A) by the following
equations:

diff(A′, A) =
{

A′ −A (if A′ −A = 0)
A′ −A + 360◦ (if A′ −A < 0) (6)

α(D, A; n) = 1
360◦n

∑n
i=1 diff(A(i), A(i−1)), where (D(i), A(i)) = Tn(D, A)(7)
α∞(D, A) = limn→∞ α(D, A;n) (8)

The difference of A is always measured to the positive direction by diff(A′, A)
in Eq.(6). The definition in Eq.(8) shows that the rotation number is the average
difference of A over an infinite number of mapping iterations. In actuality, since
it cannot be calculated numerically for (D, A) 6= (0, 0), we use an approximated
rotation number α(D, A; n) for certain values of n, defined in Eq.(7). We here
note that, when the mass parameter a = a0 and P = (D, A), then if necessary,
we write α(D, A;n) as α(P; n) or α(D,A, a; n).

If P is periodic, α∞(P) = q/p with integers p (period) and q, and α(P; p) =
α∞(P). This property helps us to find the periodic points from the distribution
of α(P;n). Let us consider the limiting value of α∞(P) as P → P0, which is
calculated from the eigenvalues of the linearised map of T at P0. When this
limit is rational, the fixed point and the periodic points are degenerate. If the
mass parameter a is changed, the periodic points have finite distances to the
fixed point or vanish.

3. Results

Here, we show the role of periodic points bifurcated from the fixed point on
the structural change of the Poincaré section Π when the mass configuration is
changed. First, we show the common properties shared by the periodic points
over the whole range of the mass parameter a. We then follow the periodic
points over a certain range of a corresponding to a value of α∞, and show how
these points are related in detail to the structures on Π.

3.1. Properties of the Periodic Points

Even though the periodic points bifurcate (or disappear) at arbitrary a that
α∞(P0, a) is rational, most of them have low stability, and few of them have
visible influence on the structure of Π. We have found that such dominant
periodic points have rotation numbers with the following form:
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α∞ =
n− 2

n
, where n = 3, 4, 5, · · · , (and reduce the RHS by 2 for even n).

(9)
The number of these points is always 2n. If n is odd, bifurcated periodic orbits
are composed of one stable and one unstable orbit with period n, whereas if n
is even, there are two stable and two unstable orbits with period n/2.

The periodic points with α∞ listed in Eq. 9 appear at a = an−2/n where
α(P0, a) = (n − 2)/n: for example, a1/3 = 0.40, a1/2 = 0.0198, a3/5 = −0.15,
a2/3 = −0.25. Although we do not show it in a figure, α(P0, a) monotonically
decreases from 1 to 0 (all possible values of the rotation number) as a increases
from 1 to −1/2. The mass parameter a = a1/3 is the critical point. The periodic
points degenerate with P0 at a = a(n−2)/n leave P0, as a decreases if a < a1/3,
or as a increases if a > a1/3.

3.2. The influence of the periodic points on the structure on Π

We shall follow the periodic points with α = 3/5 with decreasing a. From our
observation of the periodic points with α = (n − 2)/n for 3 5 n 5 20, we
know their behaviour is basically similar. We here show our observation for the
α = 3/5 case. Figure 1 shows the periodic points on Π over the partitioned Π
according to Sc. The colour and the printed number of each region is the value of
c of Sc corresponding to the region. The central region corresponds to ∪∞

c=32
Sc,

which approximates the extent of the Schubart region corresponding to S∞.
At a = −0.15 in Fig.1(a), there are periodic points si and ui (i = 1, 2, 3, 4, 5)
with α∞ = 3/5 in the Schubart region. There are two periodic orbits, and the
stable one intersects with s1, s2, s3, s4, s5, and again s1, while the unstable one
intersects with u1, u2, u3, u4, u5, and again u1, in that order. Approximate
separatrices with pentagrammic shape are also shown. At a = −0.16 in Fig.1
(b), the periodic points are more distant from P than those at a = −0.15. The
separatrices reach the front of the border of the Schubart region. There are
blocks of regions with germ-like shape (hereafter we call them ‘germs’), which
grow along the separatrices. In this figure, these blocks have regions marked with
one of the following: {5′, 9′, · · ·}, {9′′, 13′, · · ·}, {8′, 12′, · · ·}, and {7′, 11′, · · ·}. At
a = −0.166, the germs gather around si. The region corresponding to S∞ is
broken into the inner pentagon and five small triangular areas. They are the new
Schubart region and the stable regions of si. As a decreases, the germs gathering
around si sink toward valleys between arches, whereas the stable regions of s1

shrink. We can obtain the coordinates of si until a = −0.186, solving si = T 5(si).
As can be seen in Fig.1(d), the extent of their stable regions is unresolved.

Let us consider the relation between the observations above and the struc-
ture we revealed in Paper I. The Poincaré section contains: a hierarchical
structure of the Schubart orbit, its stable region (the Schubart region), arch
shaped blocks surrounding this stable region, and further outside the fast es-
caping region. Their symbolic sequence belongs to S∞, S∞, Sc, and S(c,∞). An
arch shaped block corresponds to the union of the cylinders ∪c∈C(r)Sc, where
C(r) = {c|c ≡ r(mod narch)}, the number of arches narch, and a unique number
r given for the arch. Due to this composition rule, all the regions in an arch
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must be replaced, when the new arch appears. The germs bifurcating from the
arches make this replacement. This summarises our understanding reported in
Paper I. In the present study, we find that such germs are the structure associ-
ated with the stable periodic points si according to the observation for Fig.1(b).
Moreover, in Fig.1(c), looking at one of si, its stable region, and the gathering
germs, we can consider them as the hierarchical structure similar to that of the
Schubart orbit.
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(a) (a, b) = (−0.150, 0)

(b) (a, b) = (−0.160, 0)

(c) (a, b) = (−0.166, 0)

(d) (a, b) = (−0.186, 0)

Figure 1. The periodic points with α = 3/5 over the regions on Π


