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Abstract. We consider the structure of the finite motion sets surround-
ing stable periodic orbits in the general three-body problem. We study
the vicinities of three periodic orbits (von Schubart’s orbit in the rec-
tilinear problem, Broucke’s orbit in the isosceles one, and the “Eight”
orbit) in non-hierarchical triple systems. These three orbits have the
special feature that sometimes one body passes through the center of
mass of the triple system. Corresponding triple systems have zero angu-
lar momentum. The “Eight” orbit has an intermediate position between
the two other orbits, which are the limiting cases. We have found a
“bridge” of long-term metastable systems connecting these three orbits.
The metastable trajectories can “stick” to the vicinity of one of the pe-
riodic orbits and sometimes shift from one vicinity to another one. The
hierarchical Hill-type periodic orbits are also studied and their vicini-
ties delineated. The structure of the near-periodic motion manifold is
described.

1. Introduction

In stellar dynamics and celestial mechanics, periodic orbits play an important
role. In particular, stable periodic orbits may be surrounded by sets of similar
orbits with finite motions. These orbits form tube-like manifolds which can
“attract” orbits in dynamical systems due to the complicated structure of the
boundary layer. The unstable periodic orbits can generate sets of trajectories
with chaotic motions.

The general three-body problem may reflect several main dynamical fea-
tures inherent to a wider class of dynamical systems. So an investigation of
periodic and near-periodic solutions in the three-body systems is of interest for
a wider class of problems.

The first periodic solutions in the three-body problem were found by Eu-
ler and Lagrange. Subsequently, a huge number of periodic orbits have been
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discovered. One new method for constructing periodic solutions is based on
minimization of the action functional (Moore 1993, Vanderbei 2004). Using
such an approach, Moore (1993) has proposed a classification of simple periodic
orbits in plane three-body systems for different potentials ϕ(r) ∝ rα (in the
Newtonian case α = −1).

Amongst periodic solutions in the three-body problem, one can distinguish
so called “choreographies”, when all three bodies move one after other along
the same closed curve. Two famous examples of such orbits are the Lagrangian
solution and the “Eight” orbit (Moore 1993, Chenciner and Montgomery 2000)
in the equal-mass systems. One can also note “partial choreographies”, when
two bodies move one after other along the same closed curve, while the third
body moves along a different closed curve.

Besides minimization of the action functional, one can search for periodic
and near-periodic solutions by other means. One possible method is scanning
an initial data region and use of some iteration procedure.

For the equal-mass free-fall three-body problem, three simple stable periodic
orbits are well-known. These orbits are shown in Fig. 1. A number of periodic
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Figure 1. Three stable periodic orbits in the free-fall three-body
problem: a) von Schubart (1956) orbit; b) Broucke (1979) orbit;
c) “Eight” orbit.

orbits in rotating systems were found by Vanderbei (2004). We also refer the
reader to the paper by V. Titov in this volume.

2. Properties of near-periodic orbits

A wide class of periodic and near-periodic orbits consists of so called Hill-type
orbits (see, e.g., Vanderbei 2004, Martynova et al. 2005). In these orbits, two
bodies form a dynamically isolated binary, and the third body moves around
its center of mass along a quasi-circular curve. Near-periodic Hill-type orbits
form loop-like (prograde motions) or petal-like (retrograde motions) structure
(Fig. 2). When the number of loops or petals is odd, the components of the
binary move along the same curve. When the number of loops or petals is even,
the trajectories of the binary components are shifted by a definite angle.

The stable periodic orbits by von Schubart (1956), Broucke (1979) and the
“Eight” orbit mentioned above are all surrounded by near-periodic orbits with
finite motions. Three examples of such trajectories are shown in Fig. 3.
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Figure 2. The examples of loop-like (a) and petal-like (b) Hill-type
near-periodic orbits.

 
a) blurring     b) libration  c) precession 

Figure 3. The examples of near-periodic motions in vicinities of von
Schubart (a), Broucke (b), and “Eight” orbits (c).

We can see three possible types of motion in vicinities of these stable orbits:
a) blurring of trajectory windings; b) libration with respect to the center of mass;
c) circular precession.

Orlov et al. (2004) have investigated possible connections between these
three stable periodic orbits for plane equal-mass systems. Initial positions of
bodies were chosen in syzygy crossing, when one component is placed in the
center of mass of the triple system. The initial conditions could then be deter-
mined by three parameters: the virial ratio k and two angles ϕ1 and ϕ2 between
the velocity vectors of the two outer bodies and the line connecting these bod-
ies. The dependence of life-time T (k, ϕ1, ϕ2) was studied, and the regions
with T > 1000τ (τ is crossing time) were outlined. Three sections T (ϕ1, ϕ2)
at k = 0.2, 0.4, 0.5 are shown in Fig. 4. Three regions of near-periodic finite
trajectories generated by these periodic orbits do not join each other, however
they are connected by long-living unstable systems.



42 Martynova et al.

 
a              b     c 

Figure 4. The dependencies T (ϕ1, ϕ2) for k = 0.2 (a), 0.4 (b), and
0.5 (c). The stability regions are the upper plateaus.

We note that the two periodic orbits mentioned above are realized in two
special limit cases of the three-body problem: i.e. the isosceles and the rectilin-
ear. These orbits are surrounded by regions of finite motions.

In the free-fall problem, some trajectories can “stick” to the stable periodic
orbit regions for a long time (∼ 100τ). These trajectories were called metastable
(see Martynova et al. 2003). Sometimes the same trajectory may visit the
vicinities of stability regions around different periodic orbits during its evolution.
The evolution of metastable systems is terminated by escape.

3. Conclusions

We summarise as follows:

1. Stable periodic orbits in the general equal-mass three-body problem are
connected by long-living unstable systems.

2. Hill-type stable orbits correspond to the resonances between periods of the
inner and outer binaries.

3. Petal-like and loop-like structures for near-periodic orbits correspond to
retrograde and prograde motions.
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