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Abstract.
We discuss the stability of a hierarchical three-body system. First we

derive an analytical expression for the energy exchange between a binary
and a third body in a single encounter. Then a stability limit for a single
encounter is defined. Finally the stability limit for a triple system to
survive for 10 000 revolutions of the outer orbit is calculated and refined
using numerical orbit calculations.

1. Introduction

The three-body problem in gravitational physics has remained a central problem
since the times of Isaac Newton. It can be simply stated as the problem of
finding orbits of three bodies under their mutual inverse-square law gravitational
attraction, starting from any given initial positions and velocities, and extending
in time both backward and forward to infinity. The problem has been studied
by a number of famous mathematicians, eg. Euler, Lagrange, Jacobi, Tisserand,
Hill, Poincaré, Sundman, Burrau, Kozai, Kustaanheimo, Stiefel, Henon, Marchal
and Szebehely. In what may be called the classical period, analytical methods
dominated, but since around the mid-1960’s the possibility of accurate orbit
calculations in even the most general problems have brought a new dimension
to the study of the three-body problem. One of the early important findings of
the studies using powerful computers was the discovery of the inherent instability
of three-body systems. Two of the bodies form a binary while the third body
escapes. This process has been termed gravitational slingshot. One of the
challenges today is to understand the principles of the gravitational slingshot
as well as to establish stability boundaries in the phase space which separates
unstable systems, leading to slingshot, from stable three-body systems. These
investigations have numerous important applications in modern astrophysics.
The derivations in this paper are found in detail in Valtonen and Karttunen
(2005). We start by considering perturbations by a distant companion of a
binary.
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2. Perturbations of a and e

The Lagrangian equations are the traditional approach to perturbations. Here
we will study another method for finding the effect of perturbations on the
semi-major axis a and eccentricity e of a perturbed binary. This method can be
applied to a great variety of perturbations.

We begin with the Newtonian equation of motion in the form

r̈ = −µr/r3 + f , (1)

where r is the relative position vector, µ = G(ma + mb), ma and mb are the
masses of the binary components, and f is a (small) extra term due to pertur-
bations. It can be any vector-valued quantity with a dimension of acceleration,
and it may be a function of the position and velocity.

First start by defining the angular momentum per unit mass k and a vector
related to the eccentricity of the binary orbit e:

k = r × ṙ,

−µe = k × ṙ + µr/r.
(2)

The time derivatives of these are

k̇ = r × f , (3)

−µė = k̇ × ṙ + k × f . (4)

We know that k is perpendicular to the orbital plane and its length depends
on the parameter p of the orbit. Therefore it can be expressed in terms of p and
a unit vector êζ , perpendicular to the orbital plane:

k =
√

pµêζ . (5)

Similarly, the length of e is the eccentricity of the orbit, and its direction is
the direction of the perihelion.

e = eêξ. (6)

Using these we find the following expressions for the derivatives of k and e:

k̇ =
1
2

√
µ/p ṗêζ +

√
pµ ˙̂eζ , (7)

ė = ėêξ + e ˙̂eξ. (8)

Now we may find the change in the eccentricity. Since êξ · ˙̂eξ = 0, the scalar
product of the previous equation with êξ gives

êξ · ė = ė, (9)

from which
ė =

1
µ

(êξ · ṙ × (r × f) +
√

pµêη · f). (10)
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The change in the semi-latus rectum of the orbit is found by taking the
scalar product of Eq. (7) and êζ :

êζ · k̇ =
1
2

√
µ/pṗ,

from which
ṗ = 2

√
p/µêζ · (r × f). (11)

The effect on the semi-major axis is found from the equation a = p/(1 − e2),
when we know the changes in p and e:

ȧ =
ṗ

1− e2
+

2peė

(1− e2)2
. (12)

One may also derive ȧ directly by applying the method of perturbative
differentiation to a Keplerian orbit.

3. Binary evolution with a constant perturbing force

As an application of the previous section we consider first order secular pertur-
bations of the semi-major axis of the inner binary, under a constant perturbing
force. This is relevant to highly hierarchical binaries where the ratio of the
semi-major axes of outer and inner binaries ae/ai is large. Then the outer
binary component appears practically stationary in relation to the fast orbital
motion of the inner binary. We will find that there is no secular energy exchange
between the inner and outer binary in this situation.

The first order perturbing acceleration is

f = −Gm3

R3
3

(
r − 3r ·R3

R2
3

R3

)
(13)

where the perturbing body of mass m3 is at position R3 relative to the binary
centre of mass. This acceleration is substituted in Eqs. (10)–(12) above, using
a constant perturber at

R3 = R3êr (14)

where êr is the unit vector towards the third body, together with the standard
description of two body motion:

r = a cosEêξ − aeêξ + b sinEêη,

ṙ = −aĖ sinEêξ + bĖ cosEêη,

Ė =
√

µa−3/2

1− e cosE
,

dM = (1− e cosE) dE.

(15)

Here E is the eccentric anomaly and M the mean anomaly; a and e are the
semi-major axis and eccentricity of the inner binary. Then we have some routine
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calculations to carry out. Averaging over the complete orbital cycle we can easily
see that (Valtonen and Karttunen 2005)

〈ė〉 = −15
2

√
p

µ

Gm3

R3
3

a e(êξ · êr)(êη · êr), (16)

〈ṗ〉 = 15
√

p

µ

Gm3

R3
3

a2e2(êξ · êr)(êη · êr) (17)

which leads to

〈ȧ〉 =
〈ṗ〉

(1− e2)
+

2pe 〈ė〉
(1− e2)2

= 0. (18)

Thus, in our current approximation, the semi-major axis of the binary does not
have secular evolution, unlike e.g., the eccentricity of the binary.

Our next problem, in order of increasing difficulty, is the calculation of the
energy change of a binary when a third body passes by at a close distance to
it. It is then not possible to claim that the third body is stationary relative
to the binary but we must describe its orbital motion. For that purpose the
approximate ways of describing elliptic motion as a function of time are used.
It is not as simple as one might expect from the simple geometry of the orbit;
one resorts to infinite series, truncating the series at suitable points for practical
calculations.

4. Slow encounters

The problem of the energy change of a binary (mass mB) caused by a passing
third body (mass m3) in rather complicated (Walters 1932a, b, Lyttleton and
Yabushita 1965, Yabushita 1966, Heggie 1975, Heggie & Hut 1993, Roy and
Haddow 2003). It is obvious that it should be so since the two orbits may be
oriented in many different ways relative to each other, with different eccentric-
ities, semi-major axes, closest approach distances etc. For this reason we limit
ourselves to the rather simple case of a circular binary and a third body orbit
of fixed eccentricity. The outer orbit is taken to be elliptic. The approximation
considered here is called adiabatic since the perturbing potential varies slowly in
comparison with the orbital frequency of the binary.

The inclination between the two orbital planes is denoted ι. The other
parameters describing the relative orientations of the inner and the outer orbits
Ω and ω, are considered less essential, and their influence is averaged over in the
end.

The eccentricity of the outer orbit is denoted e. It has been shown by
numerical orbit integration that the energy change is not very sensitive to the
eccentricity of the outer orbit near the parabolic case (Saslaw et al. 1974). In the
analytical calculation below we give the eccentricity a fixed value e = 0.265. This
is low enough that the series mentioned above converges well, and the particular
value of 0.265 is chosen for convenience since the value of mean anomaly M =
π/3 corresponds to the true anomaly φe = π/2 at nearly this eccentricity. The
calculation could be carried out for any other low value of e without significant
change in the final result.
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The encounter is assumed to be effective only between φe = −π/2 and
φe = π/2, which is where most of the action takes place, especially in highly
eccentric or parabolic orbits. Therefore we expect that the derived model is
applicable to parabolic or even mildly hyperbolic encounters.

The circular binary is rather special but much simpler than the general case
because the orientation of the major axis in its orbital plane does not need to
be specified. The special symmetry due to the zero inner eccentricity simplifies
the derivation considerably.

We divide the integration in two parts: the approaching branch, from M =
−M0 to M = 0, and the receding branch from M = 0 to M = +M0. M0 is
defined so that the inner binary executes exactly one revolution in its initial
orbit while the third body progresses from M = 0 (pericentre) to M = M0. In
our example below M0 is close to π/3. We ignore the effects of the subsequent
revolutions since they typically happen while the third body is outside the range

−π

2
≤ φe ≤ π

2
. (19)

We integrate the relevant functions between M = 0 and M = M0 only.
Numerical experiments have shown that the effects of the whole encounter may
be well estimated by using the receding branch.

After a rather long but straightforward calculation one obtains (Valtonen
and Karttunen 2005)

∆ =
∆EB

EB
= −∆ai

ai
= −0.18

m3

mB

(
Q

2.5

)−3 [
(1 + cos ι)2/4

]
sin 2φ0 (20)

where ai is the inner binary semi-major axis, EB is the binary binding energy,
Q is the pericentre distance of the outer orbit, normalised to ai, and φ0 is the
phase angle of the binary at the time of the pericentre passage.

This expression may be compared with results from numerical orbit calcu-
lations with parabolic third body orbits. Figure 1 shows an example of how ∆
varies with the phase angle φ0. We see that in fact ∆ is of the form

∆ = 〈∆〉+ A(∆) sin 2φ0, (21)

where A(∆) is the amplitude of the variation and 〈∆〉 is the mean level.
In addition, the amplitude A(∆) should be multiplied by an exponential

factor. It becomes
exp[−0.5(Q/Q1)3/2],

where the scale factor Q1 is

Q1 = 2.5(1 + m3/mB)1/3. (22)

Therefore the Q dependence in A(∆) should be of the form

Q−3 exp[−0.5(Q/Q1)3/2]. (23)

Heggie (1975) and Roy and Haddow (2003) derive a coefficient ≈ 3.73 instead
of 0.5 in the exponent using a parabolic passing orbit.
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Figure 1. The relative energy change ∆E/E = ∆ of the binary in
a parabolic encounter with a third body. Computer experiments (+)
are compared with a sinusoidal function of φ0. The values of the mean
energy change 〈∆〉 and the amplitude A(∆) are indicated. The case of
ι = 0◦, m3 = mB, ei = 0 and Q = 3.
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Figure 2. The stability limit in numerical experiments (+) as a func-
tion of cos ι. The line follows Eqs. (25) for the case of m3 = mB.
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In many applications it is easier to use a pure power law rather than this
combination of power law and exponential. The exponential can always be
modeled locally by a power law, with a power which increases with increasing
Q. Thus we have to specify the range of Q we are interested in, and then make
the proper choice of the approximate power. We do it first at the smallest values
of Q where our theory may still be applicable. This range is approximately

Qst < Q < 1.5Qst

where Qst signifies the stability boundary. This is defined as the minimum value
Q where the original binary survives the encounter at all phase angles φ0 and
at all values of ω and Ω.

It is possible to derive an approximate expression for Qst by requiring that
the sinusoidally varying component of ∆ has a specific value at the stability
boundary, e.g. A(∆) = 0.18. Our argument would be that greater amplitudes
of ∆ would lead to an exchange of a binary member with the third body. Then

Q
(a)
st = 2.5(m3/mB)1/3((1 + cos ι)2/4)1/3. (24)

Taken literally, this would imply that the stability boundary goes to zero
at ι = 180◦, which is not reasonable. Actually, in more exact calculations we
would expect a functional form: const+(1+cos ι)2 instead of (1+cos ι)2. Using
this result we write numerical fitting functions

Q
(d)
st = 2.52[(1 + m3/mB)/2]0.45[(0.1 + (1 + cos ι)2)/4]m

Q
(r)
st = 2.75[(1 + m3/mB)/2]0.225[(0.4 + (1 + cos ι)2)/4]0.4

(25)

The first form is for direct orbits (cos ι0 ≤ cos ι ≤ 1), and the second one for
retrograde orbits (−1 ≤ cos ι ≤ cos ι0). The power law index m is given by

m = 0.06 + 0.08(1 + m3/mB),

and the direct/retrograde border cos ι0 is defined as

cos ι0 = 1.52[(1 + m3/mB)/2]− 1.28.

This gives a good representation of the stability boundary when the masses are
not too unequal, i.e. in the mass range 0.2 ≤ m3/mB ≤ 2.0. Note that (m3/mB)
of Q

(a)
st is replaced by (1+m3/mB) in the more accurate Q

(d)
st and Q

(r)
st . Because

of this the stability boundary scales as a power of the exponential scale factor
Q1 . A fit of these functions to experimental data is shown in Fig. 2.

Hills (1992) determined the stability boundary numerically over the mass
range 0.15 ≤ m3/mB ≤ 5000. He used orbits of random inclinations and ob-
tained the result

Qst(Hills) = 2.1(1 + m3/mB)1/3. (26)

This is in some ways a compromise between Q
(d)
st and Q

(r)
st , since the power 1/3

of the mass factor is intermediate between the corresponding powers of 0.45 and
0.225 in our equations.

Notice that our expressions do not contain the mass ratio ma/mb of the
binary members. Numerical experiments by Hills (1984) for close encounters
between a star-planet system and a stellar intruder show that indeed we may
neglect this parameter in the first approximation.
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5. Stability of triple systems

Up to now the notion of stability has been used in relation to only one pericentre
passage. Often it is more interesting to know what happens after many pericen-
tre passages when the third body approaches the binary repeatedly. Obviously,
a more stringent stability limit, i.e. a greater value of Q is needed to guarantee
stability. The stability may also be defined in different ways, giving slightly
different results.

Let us start by defining stability so that for a stable orbit the relative en-
ergy change should be no greater than 10−3 in either direction during a single
pericentre passage. This corresponds to the survival of the triple system for
105 revolutions of the outer binary, according to the following estimate. If the
destabilising level of accumulated relative energy change is 10−1/2, and the en-
ergy change accumulates in the manner of random walk (Huang & Innanen
1983), then the destabilising level is achieved after

(
10−1/2/10−3

)2
= 105 steps.

The random walk type behaviour of the energy changes is due to the phase
factor sin 2φ0. Generally, successive encounters take place with different values
of φ0, the latter being distributed more or less randomly. There is also a con-
stant (independent of φ0) drift factor which may be dominant depending on the
inclination. However, numerical experiments (Saslaw et al. 1974) have shown
that once the eccentricity ei has increased to about ei = 0.2, the drift becomes
insignificant in comparison with the random walk. The eccentricity goes over
this limit quite easily at moderate values of Q.

When we extend the theory to small values of ∆, i.e. to large Q, we have to
take account of the exponential factor. It makes the power law Q−n the steeper
the greater is the value of Q. For the relative energy change ∆ = 10−3 the
suitable effective power is 11 (Valtonen 1975).

Therefore the power of the mass and inclination factors in Eq. (24) should
be lowered from 1/3 to ≈ 0.09. Using numerical experiments we further refine
the expression and get a new stability limit, suitable for all inclinations:

Qst(A(∆) = 10−3) =3.62 [(1 + m3/mB)/2]0.23

(
m3

mB

)0.09

×

[1.035 + cos ι]0.18 .

(27)

Figure 3 shows that this gives a good description of the stability boundary.
Figure 3 also demonstrates that the stability limit based on the drift |〈∆〉| at
the level of 10−3 is about equal to or less than the limit derived above from the
amplitude A(∆). Thus the contribution of the drift to the stability boundary
can generally be ignored. Only at small inclinations and close to ι = 180◦, and
as long as ei stays small, does the drift become important.

Less stringent stability criteria have also been used. One may require that
in 100 revolutions of the outer orbit there is no major orbital change (Mardling
& Aarseth 1999), or that within some specific number of revolutions of the
original outer orbit there should be neither exchanges of the binary members nor
escapes of any of the bodies (Huang & Innanen (1983) use the revolution number
N = 62, Eggleton and Kiseleva (1995) use N = 100); sometimes the survival
through an even smaller number (10–20) of revolutions has been considered to



52 Valtonen et al

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2

Q

1+cos(i)

DeltaE/E=0.001

amplitude

mean value

Figure 3. The Q-boundary of A(∆) = 10−3 (+) and of |〈∆〉| = 10−3

(dotted line). The analytical function for the former is drawn as a
dashed line. The mean value changes its sign from positive to negative
at cos ι ≈ −0.375 when going from −1 to +1 along the cos ι axis. The
case of m3 = mB.

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

Q

e

Stability limit vs. eccentricity’
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be sufficient for stability (Harrington 1972, 1975). However, the results are not
very different even though the chosen revolution number N varies a lot. This
is because in a random walk with a constant energy step, in order to cover a
standard magnitude change in energy,

√
N = constQ11, i.e. the stability limit

Qst varies only as the 1/22nd power of N .
The stability limit also depends on the strength of binding of the outer

binary to the inner binary. If the outer binary is initially only very loosely bound,
then even a small positive energy increase at the pericentre may set it loose.
The degree of relative binding is best described by the axial ratio ai/a, or since
Q = (a/ai)(1−e), by (1−e)/Q. Putting this relative binding equal to the relative
energy change |∆| ∝ Q−11, i.e. setting |∆| = ∆EB/EB ≈ Eouter/EB ≈ (1−e)/Q,
we find that the stability limit varies as

Qst ∝ (1− e)−α (28)

where α = 0.1. Actually, putting α = 0.3 − 0.4 gives a better agreement with
some experiments (see Fig. 4, Huang & Innanen 1983, Mardling & Aarseth 1999)
while in others α ' 0.0 (Eggleton & Kiseleva 1995); the results depend on the
definition of stability and on the masses of the bodies.

The experimental value for the stability limit for equal masses m1 = m2 =
m3, e = 0 and cos ι = 1 is Q = 2.7 after N = 62 revolutions (Huang & In-
nanen 1983). With these parameters A(∆) gives the value 0.03 which becomes
∆EB/EB = 0.23 after multiplication by

√
62. This is just at the relative energy

change usually associated with instability (i.e. ≈ 0.2) and thus the stability limit
of Huang & Innanen (1983) is as expected. The stability limit of Mardling &
Aarseth (1999) for the same case is Q = 3.65 which seems contradictory. At
this pericentre distance we expect the average energy change per revolution to
be 0.003 which is multiplied by

√
100 and adds up to 0.03 after 100 revolutions.

This is only about 10% of the value at the stability boundary. However, in
Mardling & Aarseth (1999) the stability criterion was such that two orbits ini-
tially differing by one part in 105 in the eccentricity should remain close after 100
orbits. |∆EB/EB| being at about 10% of the stability limit could well be used
as a definition for two nearly identical orbits not to have evolved too far apart
from each other and for the system to be stable. The corresponding stability
limit of Bailyn (1984), Q = 3.1 lies between the previous two, and it appears
that the definition of instability is also intermediate between Huang & Innanen
(1983) and Mardling & Aarseth (1999).

So far we have not considered the possibility that the inner binary orbit
may be eccentric. In the first approximation we may take the time averaged
mean separation r = ai[1 + 0.5e2

i ] in place of ai in our perturbation equations.
Then the stability limits obtained earlier are simply multiplied by r/ai since the
inner binary is effectively this much greater in extent, and the encounter has to
be more distant by the same factor for stability. In practice it appears that this
method gives reasonable agreement with numerical experiments (Bailyn 1984).

Even though there are obviously many different ways to define stability,
and correspondingly many possible stability limits, it appears safest to use Qst

as defined by orbit calculations:
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Q
(2)
st = 3

(
1 +

m3

mB

)1/3

(1− e)−1/6

×
(

1 +
1
2
e2
i

) [
2− (cos ι)2

]1/3
.

(29)

This expression has been found to be quite satisfactory in numerical experi-
ments (Valtonen et al. 2006) for the stability of N = 10000 revolutions when the
stability is defined in the manner of Huang and Innanen (1983). The expression
is valid in the range 1/6 ≤ m3/mB ≤ 5 and 0 ≤ e ≤ 0.9.

Here we must remember the Kozai resonance which operates effectively at
inclination angles close to ι = π/2. The inner eccentricity grows up to values
close to ei = 1 which means that the factor 1 + 0.5e2

i is best replaced by 1.5 in
Eq. (29) for these inclinations, independent of the original eccentricity ei (Miller
and Hamilton 2002, Wen 2003).
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