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Abstract. We study the orbital evolution of planetary systems similar
to the Solar System. The averaged equations of motion are integrated
numerically, and the orbital evolution of Sun-Jupiter-Saturn type systems
is investigated on time-scales of order 10 Gyr. This allows us to analyse
resonance conditions for exoplanetary systems.

1. Introduction

The stability of the spatial planetary three-body problem has been investigated
by Robutel (1993a, 1993b), Laskar and Robutel (1995) and Robutel (1995) using
Kolmogorov-Arnold-Moser (KAM) theory. A source of chaotic behaviour for
the Jovian planets (both for two and four planets), namely, the 2 : 5 resonance
between the mean motions of Jupiter and Saturn has been explored by Varadi,
Ghil and Kaula (1999). The motion of the Jupiter–Saturn planetary system
near the 2 : 5 resonance has been modeled analytically by Michtchenko and
Ferraz-Mello (2001) in the frame of the planar three-body problem.

In the present paper we continue our study of the spatial planetary three-
body problem (Kholshevnikov, Greb and Kuznetsov (2001, 2002), Kholshevnikov
and Kuznetsov (2004, 2005), Kuznetsov and Kholshevnikov (2004)). The aim of
the present work is the investigation of the dynamical evolution of a weakly per-
turbed spatial two-planetary system on time-scales of order 10 Gyr. We start by
presenting the Hamiltonian as a Poisson series with respect to all elements, using
the Lie transforms method to construct the averaged Hamiltonian up to squares
of small parameters. Numerical integration of the averaged equations of motion
allows us to study the orbital evolution of Jupiter–Saturn system on a very long
time scales. Analysis of the variable change functions shows boundaries of valid-
ity of this approach with respect to eccentricities, inclinations and semi-major
axes of the planets. In particular this shows that the resonant properties of
extrasolar planetary systems can be validly investigated.
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2. The Sun-Jupiter-Saturn System

The averaged equations are integrated numerically by 15th order Everhart and
11th order Runge-Kutta methods (for slowly changing orbital elements) and by
the spline interpolation method (for rapidly changing elements). The accuracy
of the integration is monitored by computation of the integrals of energy and
area.

The lower and upper limits for averaged eccentricities are 0.017, 0.051
(Jupiter), 0.019, 0.078 (Saturn), and for averaged inclinations are 1.3◦, 2.0◦
(Jupiter), 0.73◦, 2.5◦ (Saturn). The results obtained for the two integrators
are in good agreement. The relative differences between the first and second
approximations exceeded the small parameter µ = 1 · 10−3, but are less than√

µ = 3.2 · 10−2.
In the first approximation the evolution of the longitudes of ascending nodes

with respect to the ecliptic plane turns out to be a libration, with amplitudes
of 12.9◦ and 32.8◦ for Jupiter and Saturn respectively, in agreement with the
results of Smart (1953). The evolution of the logitudes of ascending nodes with
respect to the Laplace plane turns out to be secular.

In the second approximation the evolution of the longitudes of ascending
nodes with respect to the ecliptic plane turns out to be a combination of oscil-
lations with a large amplitude and a slow secular motion.

On the Laplace plane the difference between the longitudes of ascending
nodes of Jupiter’s and Saturn’s orbits, δΩ, is identically equal to 180◦ (Charlier
1927). We find from our calculations |δΩ−180◦| < 0.0085◦ through time interval
10 Gyr, in a good agreement with the theory.

The evolution of the pericentre longitudes of Jupiter’s and Saturn’s orbits
turns out to be secular for both approximations.

The short-period perturbations of Jupiter’s and Saturn’s semi-major axes do
not exceed 0.0023 AU and 0.0122 AU, respectively. The short-period perturba-
tions for the other elements are much less than the amplitudes of the long-period
perturbations.

3. Resonances in the Two-Planetary Problem

The resonant condition nω = n1ω1 + n2ω2 = 0 defines the resonant value of the
semi-major axis of the orbit of the second planet ares

2 . The solution based on
the Poisson series expansions is not valid or restrictedly valid for a2 ∈ [ares

2 −
∆a, ares

2 +∆a]. Here ∆a is the resonant zone width. We can determine ∆a from
various conditions. We here use estimates for the narrow and wide resonant
zones widths introduced in Sokolov (1980), Sokolov and Kholshevnikov (1981).

Let us turn now to extrasolar planetary systems, having two planets with
the more massive one situated closer to the parent star (Marcy, Butler, Fisher
et al. 2005), Schneider (2005). Resonant semi-major axes ares

2 are presented in
table 1 for five two-planetary systems. Here µ sin i0 is an estimate of the small
parameter µ from the observational data. The orbital inclination i0 with respect
to the plane of the sky is unknown and is thus a free parameter. The indices n1

and n2 correspond to the value ares
2 close to a2. The interval data for µ sin i0,
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m2/m1 and a2/a1 correspond to different sources: Marcy, Butler, Fisher et al.
(2005) and Schneider (2005). The mark “?” indicates uncertain data.

Table 2 presents estimates of the resonant zones for four two-planetary
systems. All distances in table 2 are expressed in units of the semi-major axis
of the first planet. We did not obtain results for HD 12661 as the expansions
in the present work do not contain terms for which n1 = 2 and n2 = −11
simultaneously. The semi-major axes of the planets 47 UMa c and Saturn lie
in the wide resonance region, while the semi-major axes of HD 202206 c and
HD 169830 c are located near the boundary of the wide resonance region. So
deep resonance takes place in none of the systems considered.

4. Conclusions

The evolution of the orbits of Jupiter and Saturn turns out to be almost peri-
odical on a time-scale of 10 Gyr. The differences in the results for the first and
second order approximations are explained by the influence of the small divi-
sors. They appear in the right-hand sides of the averaged equations from the
second order approximation on. The investigation of the dynamical evolution
of extrasolar planetary systems demands the taking into account of resonance
effects.
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Table 1. THE RESONANT SEMI-MAJOR AXES

Planet µ sin i0 m2/m1 a2/a1 n1 n2 ares
2

47 UMa c 0.0024–0.0025 0.30–0.32 1.78–1.79 3 −7 1.758
Saturn 0.0010 0.299 1.827 2 −5 1.842
HD 202206 c 0.0174–0.0175 0.14 2.89 1 −5 2.921
HD 12661 c 0.0022–0.0023 0.65–0.68 3.08–3.17 2 −11 3.113
HD 169830 c 0.0021–0.0040 0.79–1.40 3.35 (?) 1 −6 3.299

Table 2. THE RESONANT ZONES

Planet Narrow resonance Wide resonance
∆a ares

min ares
max ∆a ares

min ares
max

47 UMa c 0.013 1.745 1.771 0.036 1.722 1.794
Saturn 0.012 1.830 1.854 0.027 1.815 1.869
HD 202206 c 0.004 2.917 2.925 0.009 2.912 2.930
HD 169830 c 0.001 3.298 3.300 0.003 3.296 3.302


