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How to change the relative inclination in a hierarchical
triple-star system by tidal dissipation
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Abstract. A simple conceptual theory for the changes in the relative
inclination of a hierarchical triple-star system during tidal evolution is for-
mulated and tested by numerical integrations. Low inclinations are gen-
erally stable, while highly inclined ‘Kozai-cycle’ systems generally show
some decrease of the relative inclination during the evolution. If such
a system has an unusually low-mass secondary, in a short-period outer
orbit, the relative inclination may change more drastically. For Algol, the
present perpendicular orbit is hard to explain by these mechanisms, and
is probably the outcome of chaotic encounters at the birth of the system.

1. Introduction

An important characteristic for a hierarchical triple-star system is the relative
inclination between the two orbital planes, hereafter denoted j. An original goal
for this paper was to shed some light on the origin of the peculiar j ≈ 90◦ in
the Algol system (Lestrade et al., 1993). The reasoning by Söderhjelm (1975)
can be used to show that the offset from perpendicular is at most some 3◦, but
the bottom line of the present note is that this is probably accidental. In other
cases, however, tidal dissipation in a close orbit may sensibly change the relative
inclination.

Starting from a simplistic model including only the orbital angular mo-
menta, it is easy to derive an equation for j as a function of a variable angular
momentum in the close orbit. The well-known ‘Kozai-cycle’ eccentricity mod-
ulations in an inclined close orbit (Kozai, 1962) thus naturally gives a reflex
periodic change in the relative inclination. An irreversible change of the angu-
lar momentum can be had from orbit shrinkage due to tidal dissipation, and
in such a system, the relative inclination may thus also change irreversibly. By
skipping over many of the complex details in the tidal evolution, both as regards
the strength of the interaction, and in particular, by neglecting the rotational
motions of the stars, the present study gives a qualitative explanation of the
inclination variations as observed in numerical simulations.

More refined studies of the tidal evolution of particular systems have been
made by e.g. Beust et al. (1997) and Borkovits et al. (2004), but for a general
picture, the present investigation should hopefully be of some value.
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Figure 1. Theoretical variation of the relative inclination with de-
creasing G1, for original G1/G2 = 0.05(left panel), 1.5 (middle) or 2.5
(right). Full lines are for the originally retrograde orbits, dashed lines
for the direct ones.

2. The simple theory

With the magnitudes of the orbital angular momenta termed G1(close) and
G2(wide), and neglecting the rotational contribution, the total angular momen-
tum is their vector sum, of magnitude

C =
√

G2
1 + G2

2 + 2G1G2 cos j.

With G2 and C constant, this directly gives a relation j(G1), with a shape
dependent on the original ratio of the angular momenta. This ratio is given in
terms of the orbit sizes (ai) and eccentricities (ei) as

G1/G2 =
µ(1− µ)

ν

√
(1 + ν)[a1(1− e2

1)]/[a2(1− e2
2)]

where the mass-ratios are µ = m2/(m1 + m2) and ν = m3/(m1 + m2). In
typical hierarchical triples with a1 ¿ a2, we will thus have G1 < G2. When
the third mass is small (ν ¿ 1), G1 may become dominant, however, which has
some interesting consequences. Fig 1 shows one ‘typical’ (G1/G2 = 0.05) case,
where the relative inclination diminishes rather symmetrically on both sides
of the perpendicular configuration, and two extreme (G1 > G2) cases, where
retrograde high-inclination systems may become more inclined, even past 90◦.

3. The proto-Algol system

To have some rough idea about the evolution of Algol through large-scale mass-
exchange, I used the rapid binary evolution code BSE by Hurley et al. (2002).
An initial system with M1 = 3.26 M¯, M2 = 1.14 M¯and P1 = 1.95 days evolves
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through rapid mass-transfer at 300 Myr to a state at age 570 Myr with Algol’s
observed (cf. e.g. Söderhjelm, 1980) M1 = 0.80, M2 = 3.6 M¯. In the sequel,
various ‘proto-Algol’ systems are taken to have these close orbit masses, with
the third star (M3 = 1.6 M¯) in its present (P2 = 680 d, e2 = 0.22) orbit at a
high relative inclination.

With a 2-day close period, the stars are tidally deformed, and reasonable
k(2) stellar structure constants give a fast enough apsidal motion that the high-
eccentricity Kozai cycles are completely damped out (cf. Söderhjelm, 1984). For
a more interesting case, we may start with a larger close period, say P1 = 4.0
days, and this ‘pre-proto-Algol’ is hereafter called ‘System A’. In this case, three-
body effects dominate for k(2) up to around 0.05, and typical main-sequence
values (≈ 0.005 for the dominating large star, cf. Claret and Giménez, 1992)
give peaks with a maximum e1 around 0.7. In reality, these peaks will be rapidly
damped by tidal dissipation, and successively, the close orbit may become almost
circular, with a period not far from proto-Algol’s 2-day one.

4. Tidal dissipation

As described e.g. in Eggleton et al. (1998), a fully realistic model of the tidal
dissipation in a close binary is not yet available. In the present numerical simula-
tions, I have used the simplified prescription by Kiseleva et al. (1998), containing
a free parameter λ(¿ 1) describing the strength of the dissipation. (The nondis-
sipative tidal accelerations are in essence, although not in form, identical to the
ones in Söderhjelm, 1984.) Interestingly, it turns out that the final outcome of
the tidal evolution is usually very insensitive to the value of λ. A higher value
gives a more rapid shrinkage of the orbit, but approximately the same final
state is reached over several orders of magnitude for λ, and one need not know
a ‘correct’ value for it.
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Figure 2. The tidal circularization in ‘System A’, for λ = 10−5, 10−6

and 10−7. The eccentricity changes are shown at left, and at right are
the corresponding changes in the close semi-major axis.
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4.1. Results for proto-Algol (system A)

For ‘system A’, we have G1/G2 = 0.11, and from the theory above, it is clear
that for j around 90◦, even a large decrease of the close orbit angular momentum
will change the inclination only marginally. As an example (Fig 2), runs with
j = 95◦ and λ = 10−4 to 10−7 all give a 40% decrease of a1 (with a timescale
inversely proportional to λ), but this large decrease of G1 changes the relative
inclination only to j = 94.8◦, both in the theory and in the actual numerical
integrations.

If we start with even longer close periods, the Kozai-cycles have larger
amplitudes (because the tidal deformation is relatively insignificant), and very
small λ-values suffice for significant orbit-shrinkage (actually having a larger
effect than smaller ones). For not too small λ (10−4 or 10−5), we may start with
anything between 4 and 40 days and still get a final close period around 2 days.
In all cases, the changes in relative inclination are very moderate, and proto-
Algol must have started in an almost perpendicular configuration. This is not
unreasonable if we envision it as the stable remnant of a dynamically unstable
small multiple system, where the relative inclination between the orbit planes
seems to be more or less random (cf. Rubinov et al., 2004).
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Figure 3. The tidal circularization in ‘System B’, for λ = 10−4, 10−5

and 10−6. The eccentricity changes (starting from e1=0.5) are shown
at left, and the oscillatory but secularly constant relative inclinations
at right, for λ = 10−4 and 10−6.

4.2. Results for low j (system B)

When the relative inclination is below some 40(140) degrees, there are no high-
eccentricity Kozai cycles, but one may ask what happens if the close eccentricity
is large to begin with. Interestingly, from a number of numerical trials, the
circularization seems to proceed with secularly constant close orbit angular mo-
mentum, and consequently with no secular change of the relative inclination.
As an example, the 4d proto-Algol system was started at relative inclination
30◦, with varying start e1 and varying λ. In this ‘system B’, the circularization
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proceeds as usual with a time-scale proportional to λ−1, and with the final a1

only dependent on the starting e1 (see Table 1 and Fig 3). The small change
of G1 (often actually an increase) is readily apparent, giving an oscillating but
secularly constant relative inclination.
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Figure 4. The tidal circularization in ‘System C’, for λ = 10−5, 10−6

and 10−7. The eccentricity variations are at left, with the correspond-
ing large changes in relative inclination at right, for λ = 10−5 and
10−7.

Table 1. The final a1-values for ‘System B’, from different initial e1.
The approximate ‘circularization time’ for λ = 10−6 is indicated, as
well as the ratio of final to initial close orbit angular momentum.

e1(start) a1(fin)[au] tcirc[yr] G1/(G1)0
0.1 0.0802 2 ×106 1.00
0.3 0.0751 1 ×106 1.01
0.5 0.0632 5 ×105 1.02
0.7 0.0422 2 ×104 1.01

4.3. Results for large G1/G2 (system C)

In order to see larger inclination changes, one has to have a dominating close
orbit angular momentum. As an illustration, we may take a system with the
masses and 4d close period of ‘System A’, but with a third star mass of only 0.1
Msun in a 172d (1.0 a.u.) orbit. These parameters correspond to G1/G2 = 2.49,
and from theory, we may expect large changes of inclination if the close orbit is
shrunk appreciably. Some results of numerical integrations of this ‘System C’,
started with j =110◦, and are shown in Fig 4. The eccentricity and semi-major
axis of the close system decrease indeed very similarly to ‘System A’ in Fig 2,
but for the relative inclination, there is now a dramatic effect. For the observed
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a-decrease by 42%, the theory predicts a ‘decrease’ of j to around 76◦, which is
exactly the result of the numerical integrations.

5. Conclusions

To secularly change the relative inclination in a hierarchical triple-star system,
one has to change secularly the angular momentum of the close pair. For an
almost constant eccentricity, circularization by tidal friction seems to proceed
at constant angular momentum, and there are no changes of the relative incli-
nation. Only when there are ‘Kozai cycle’ eccentricity variations, does the orbit
shrinkage seem to be accompanied by a real decrease of the angular momentum.
A necessary condition for inclination change is thus a start value between about
40 and 140 degrees, and a third-body orbit small enough to induce a faster
apsidal motion than the tidal deformation of the close pair.

The effect of the angular momentum change is also very dependent on the
ratio of angular momenta G1/G2, and in most cases, there is only a moderate
decrease of the inclination (retrograde orbits remaining retrograde, with a de-
crease of 180 − j). When the angular momentum in the inner orbit is larger
than that in the outer, direct orbits still decrease their inclination, but now an
initially retrograde orbit may become steeper, even passing 90◦ to turn into a
direct one. Triples with a small inner/outer period-ratio and a low-mass third
component would thus be expected to have a distribution of relative inclinations
with more direct orbits than their ‘birth’ distribution. Since close triples with
a well-determined relative inclination are still rare, no observational test of this
prediction can be expected in the near future.

Finally, in the light of the present investigation, Algol’s curiously exact
perpendicular configuration must be assumed to be a coincidence. This result
comes mainly from the high mass of the third star, giving a low G1/G2. Even
if the large-scale mass-transfer was not fully conservative, any further changes
of G1 in this stage do not suffice to give a significant change of the relative
inclination.
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