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Abstract. This is a brief sketch of five major fundamental insights into
the cosmological many-body problem. It starts with the three-body prob-
lem on small scales, then progresses through the few-body problem to the
largest observed clusters of galaxies and clustering on the largest scales.
The five insights involve: 1. The discrete nature of the gravitational field,
2. The slingshot instability of the 3-body problem, 3. Connections be-
tween correlation functions and dynamics, 4. Distribution functions and
their derivation from gravitational thermodynamics, and 5. A statistical
mechanical basis for the gravitational thermodynamics.

Starting with the dynamics of a few particles, we can build up a series
of insights into the behaviour of the cosmological many-body problem, and its
relation to galaxy clustering. Here I’ll give a somewhat impressionistic summary
of these developments during the last two decades. They are all based on a first
discussion of this problem by Isaac Newton replying to a letter from Richard
Bentley in 1692. Bentley, one of England’s leading theologians and classical
scholars (who applied the long disused digamma letter of the Greek alphabet
to correct and reinterpret earlier texts of Homer and other classics), had asked
Newton whether a universe filled uniformly with gravitating particles would be
stable.

Newton’s replies (cf Saslaw 2000 for more technical details about this and
many of the topics mentioned here) clearly showed his appreciation of the dif-
ference between finite and infinite gravitating systems. Both were unstable. In
a finite universe the particles (stars to Newton, galaxies to us) would eventually
form a great spherical collection at the centre. But in an infinite universe, they
would collect into many clusters scattered throughout that whole universe. Our
more modern expression of this is that finite spherical systems are rotationally
invariant only around a single point, their centre, and not translationally in-
variant anywhere. Infinite systems, however, are translationally and relationally
invariant everywhere, provided the scale is large enough to be statistically ho-
mogeneous (i.e. that samples large enough to be representative have essentially
the same statistical properties anywhere in the system).

Thus we would expect properties like correlation functions, spatial and ve-
locity distribution functions, mass (or luminosity) segregation, and the geog-
raphy of dark matter to behave quite differently in finite and infinite systems.
Although Newton recognized this qualitatively, it has taken nearly three cen-
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turies to build a quantitative understanding, mostly developed in the last half
century.

Starting with the simplest version of Bentley’s cosmological many-body
problem, a Poisson distribution of particles (galaxies) in an infinite expanding
Einstein-Friedman universe, consider how this distribution evolves. The first
insight is that the zeroth-order approximation to the gravitational field is not
smooth, but grainy. A grainy system has many more types of instabilities than
a continuous system. On small scales, these instabilities can produce non-linear
chaos and emergent structures on the local dynamical timescale (Gρ)−1/2 where
ρ is the average local density. In almost all initial discrete distributions (a lattice
being an exception), neighbouring particles will be closer than the global average
in some regions and more diffuse elsewhere.

In regions where two particles are closer than average, they can remain
gravitationally bound, especially if they are in virial equilibrium so that their
kinetic and potential energies satisfy 2K + W = 0. Then the cosmic energy
equation, d(K + W )/dt + (2K + W )Ṙ/R = 0 where R(t) is the cosmic scale
length, shows that the total energy of an isolated virialized cluster does not
change as the universe expands. The cosmic energy equation is a moment of the
exact equations of motion for particles in the expanding universe, and is very
general, applying to nonlinear systems with δρ/ρ À 1 as well as to linear ones.
It also shows how a group’s total energy is affected by the adiabatic expansion of
the universe if the group is not virialized, and how these dynamics are affected by
the Hubble parameter Ṙ/R of the background universe. The Hubble parameter
depends on the total density of the universe. This includes its dark matter and
energy. If these are uniformly distributed, they will influence local clustering
mainly through R(t), but if these are inhomogeneous or time dependent, they
will complicate clustering considerably. Although bound binaries can form by
chance, most easily in flat universes having zero total energy, they are more
generally the result of unstable triplets.

The three-body problem promotes our second insight into early cluster-
ing. Its dynamical slingshot instability breaks the triplet into a more tightly
bound binary and an escaping particle, usually after a few to a few hundred or-
bital periods, depending on the initial orbit parameters. Binaries then interact
with other binaries, single particles, triplets, etc. to produce a variety of larger
and larger groups and clusters in more extended regions over longer timescales.
The system is unstable to clustering, and the clusters themselves are unstable
to ejecting their higher energy particles, but over increasingly long timescales.
This is a form of dynamical dissipation whose increasing entropy leads to com-
plex chaotic non-linear motions, and the system becomes inhomogeneous over
increasing scales. Underdense regions form between clusters.

Replication of these dynamics using computer simulations which directly
integrate the mutual gravitational orbits of all the particles in comoving co-
ordinates, helps to understand the development of galaxy clustering. Digital
simulations on Earth, the analog simulation in the sky, and fundamental phys-
ical theory can all be compared to keep our insights from going too far astray.
The basic problem is to find the best types of information to compare quan-
titatively. Pictorial illustrations, either in space or on the sky, are subject to
eye-brain illusions and can be misleading. Overly detailed information, such as



86 William C. Saslaw

the positions and velocities of all individual particles, is unique to a particular
realization and does not provide much generic insight. The art in understanding
many-body problems consists of finding descriptions which can be related to
fundamental physical concepts and can be calculated relatively easily.

Of the many statistical descriptions proposed to quantify Newton’s cos-
mological many-body problem, two have been directly related to fundamental
gravitational physics. In the 1950’s, the two-particle correlation function, ξ(r),
was adapted from theories of imperfect gases and turbulence as a description of
galaxy clustering. It was first measured accurately by Totsuji and Kihara (1969).
They realized from thermodynamic theory that the universe resembled a system
in neutral equilibrium where cosmic expansion nearly balances the gravitational
attraction of linear density enhancements. Under these conditions, the two-
particle correlation function was already known to have the scale-free form of
a simple power law. Many subsequent analyses have confirmed and extended
their work which gave ξ(r) = (r/ro)−1.8 with ro = 4.7Mpc. Correlation functions
provide a third major insight into galaxy clustering.

Like other statistics, the low order correlation functions can be observed
in the sky and measured in simulations. But they can also be partly derived
from the 6N comoving equations of motion of N particles in the position-
momentum phase space of an expanding universe. These orbital equations are
also compactly represented by Liouville’s equation. Projecting Liouville’s 6N
dimensional equation into lower 6m-dimensional phase spaces by integrating
over 6(N −m) coordinates, gives a set of coupled non-linear partial differentio-
integral equations known as the BBGKY hierarchy. These can be solved, with
suitable approximations, for the low-order correlation functions in the linear
regime where their amplitudes are less than about unity. With additional ap-
proximations, some solutions can be obtained in the non-linear regime which
characterize the observations at low redshifts on scales . 10Mpc. Details of
these solutions depend on the initial distribution of points and the rate of ex-
pansion of the universe. They may also be modified by non-uniform dark matter
with a different distribution than the galaxies (e.g. in massive haloes containing
many galaxies).

Analytic solutions of the BBGKY hierarchy are very complicated, and low-
order correlation functions contain very restricted information. After all, a clus-
ter of 100 particles involves the 100-point correlation function, as does an un-
derdense region which is expected to contain 100 particles but doesn’t. These
problems led to a search for more informative statistics which were easier to
calculate, especially in the non-linear regime.

Actually such a statistic had been used implicitly by Herschel (1784) and
explicitly by Hubble (1936) who simply counted the numbers of galaxies in cells
of a given size and shape on the sky. These counts-in-cells are one avatar of
the spatial distribution function f(N), which is the probability that there are
N particles in a cell. It can be applied to cells in space, and cells on the sky
(which are conical projections of spatial cells); it also represents the continuous
probability for finding a particle at a given distance from an arbitrary point in
space or on the sky. It is related to volume integrals of correlation functions
of all orders. Although distribution functions had long been known and are
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easy to measure, they fell into disuse because they had not been related to the
underlying dynamics.

This has now changed, first through the development (Saslaw & Hamilton
1984; Saslaw 2000) of a thermodynamic derivation of f(N) for the cosmological
many-body problem, and second through its more recent connection to statistical
mechanics (Ahmad, Saslaw & Bhat 2002; Leong & Saslaw 2004). These provide a
fundamental physical understanding which turns out to be especially interesting
because of its observed agreement with galaxy clustering (e.g. Sivakoff & Saslaw
2005). Thermodynamics provides our fourth major insight.

The thermodynamic and statistical mechanical theories both have a sim-
ple general physical assumption in common. This is that the local dynamical
timescale (Gρ)−1/2 in an overdense region is faster than the global gravitational
timescale (Gρ̄)−1/2, for the average density ρ̄, and this difference makes it possi-
ble for gravitational clustering to evolve through a sequence of quasi-equilibrium
states. In other words, local equilibria can arise faster than the cosmic expan-
sion can disrupt them. The difference in timescales does not have to be large for
this to happen, as direct N-body simulations show. Most of the general relativ-
ity cosmologies, including those with a cosmological constant and quintessence,
satisfy this criterion. From a statistical mechanical point of view, this means
that the system can undergo rapid (compared with the Hubble timescale) mi-
croscopic transitions which sample all its accessible states with approximately
equal a priori probability.

Consequently, average macroscopic thermodynamic and statistical quanti-
ties, such as temperature, pressure, density, chemical potential, internal energy,
etc., can be reasonably defined along with local fluctuations around these av-
erages. At any given time, there will be thermodynamic equilibrium relations
such as equations of state among these quantities. Even though the macroscopic
quantities may themselves change over the longer timescale, they continue to
satisfy these equilibrium relations to a good approximation at any given time.
This is the essence of quasi-equilibrium evolution. It is analogous to the case
of ordinary non-equilibrium thermodynamics. The main conditions which could
prevent quasi-equilibrium evolution are initial non-equilibrium inhomogeneities
on scales over which f(N) is being measured.

When quasi-equilibrium holds we can derive the equations of state, includ-
ing gravitational interactions of the point masses, and apply standard thermo-
dynamic fluctuation theory to them. The constraint that the system satisfies
the first and second laws of thermodynamics gives a unique form for the dis-
tribution function f(N), which describes quasi-equilibrium fluctuations around
the average value of N̄ = n̄V :

f(N) =
N̄(1− b)

N !
[N̄(1− b) + Nb]N−1e−[N̄(1−b)+Nb] (1)

where

b =
−W

2K
=

2πGm2n

3T

∫ R

0
ξ(r)rdr (2)

and 0 ≤ b ≤ 1. Here b is the ratio of the negative of the gravitational
potential correlation energy, −W , to twice the kinetic energy. This is written
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explicitly here for spherical volumes of radius R with kinetic temperature T on
the right hand side, as an example. Note that when the gravitational potential
is absent, b = 0 and f(N) reduces to a Poisson distribution. So b is a measure
of clustering, and it can also be determined self-consistently from the variance
of counts-in-cells for Eq.(1). There is also a self-consistent peculiar velocity dis-
tribution function for Eq.(1); this is a generalization of the Maxwell-Boltzmann
distribution to the cosmological many-body problem. Many properties of these
distributions are summarized in Saslaw (2000). They agree very well with both
direct N-body computer simulations, and with observations. Recent observa-
tional determination of b at redshifts less than about 0.1, using about 650,000
galaxies from the 2MASS survey, gives b = 0.867±0.026 from counts-in-cells with
sides of 8 degrees on the sky (Sivakoff & Saslaw 2005). This scale encompasses
most of the correlation contribution to b in Eq.(2). Equation (1) applies in linear
and non-linear regimes to cosmological N-body dynamical systems which cluster
from a wide range of initial conditions. However a mathematical description of
the basin of attraction for Eq.(1) remains a fundamental question for the theory.

Although thermodynamics provides a fourth major insight into the cosmo-
logical many-body problem, we can go still deeper. At a more microscopic level,
statistical mechanisms determine and generalize the thermodynamics, provid-
ing a fifth major insight. To derive a statistical mechanics, we need to solve
the partition function. This was long thought to be impossible for gravitating
systems in general, and for the cosmological case in particular. There were two
reasons for this belief. The first was that at very short distances the 1/r point
mass gravitational potential becomes infinite and makes the partition function
diverge. The cure for this is to soften the potential to the form (r2 + ε2)−1/2 so
that it becomes constant at small r. This might seem artificial, but in fact it
corresponds to surrounding the particle with a halo which, in the case of galax-
ies, is a simple approximately isothermal sphere of dark matter for which there
is independent astronomical evidence. In any case, it is possible to calculate the
partition function analytically with this potential (Ahmad, Saslaw & Bhat 2002).
Then one can let ε → 0 and show that the results remain finite and converge
uniformly in this limit to the earlier thermodynamic results. As a bonus one sees
the effects of haloes for ε > 0. Moreover, the partition function provides a clear
approximation scheme for the effects of different levels of many-body clusters on
the statistical mechanics (Ahmad, Saslaw & Malik 2006).

The second reason people doubted the existence of a gravitational cosmolog-
ical many-body partition function is that in an effectively infinite homogeneous
system the number of particles in a shell increases as r2dr while the potential
decreases only as r−1. So the integral of the total potential over an infinite vol-
ume, which occurs in the partition function, diverges. What this view forgets,
however, is that this divergence, which represents the mean field, is exactly can-
celled by the expansion in a large class of universes (see Saslaw & Fang 1996;
Saslaw 2000). This occurs because the cosmic expansion may be represented,
in these models, as resulting from a potential which has the same amplitude,
but opposite sign, as the smoothed gravitational background. This holds for all
values of the cosmic curvature, and for models which may contain a cosmological
constant or gravitating quintessence. It implies that local pecular velocities in
proper coordinates depend only on local fluctuations of the gravitational force.
As long as these fluctuations are not correlated on infinite scales, the parti-
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tion function will converge. It may depend on the size and shape of a volume,
especially if it has a dimension less than the correlation length.

All the thermodynamic functions, as well as quantities such as f(N) can be
derived analytically from the partition function, although they may be singular
at b = 1 which represents a first order phase transition (Baumann, Leong &
Saslaw 2003). In the limit when the small scale softening ε of the potential van-
ishes, these reduce to the results derived from the thermodynamic arguments
alone, confirming and generalizing them. Incorporating haloes of galaxies mod-
ifies f(N) and the velocity distribution. Comparing these modifications with
observations (Leong & Saslaw 2004) shows that the observations are much more
readily consistent with most of the dark matter surrounding individual galaxies
as they cluster, rather than with many galaxies forming or remaining within a
single supermassive dark matter halo.

The statistical mechanical partition function also provides a rigorous ap-
proximation procedure, within quasi-equilibrium conditions, for deriving the
thermodynamic results. Two main approximations were employed. The first
was to neglect the irreducible triplet and higher order terms in a cluster expan-
sion of the partition function. Recently it has become possible to calculate these
terms explicitly and show that they are usually small, becoming negligible for
systems with large numbers of particles (Ahmad, Saslaw & Malik 2006). The
second approximation was to neglect higher order terms in the expansion of the
interaction exponential of the Hamiltonian; these too are now found to be negli-
gible for systems with large N . Thus the earlier thermodynamic approximations
are now known to be both physically and mathematically reasonable, and their
small correction terms are known.

So over the last two decades we have understood much about the physics
of the cosmological many-body problem and its relation to galaxy clustering.
It started by relating the low order correlation functions to the particle dy-
namics through the BBGKY hierarchy. Then, when that analysis became too
difficult, particularly for higher order non-linear correlations, we switched to a
more macroscopic thermodynamic approach which gives many further insights.
More recently, it has been possible to develop a statistical mechanical approach,
intermediate between the detailed microscopic level dynamics and the thermo-
dynamic description.

Encouraged by their consistency with observations, these approaches can all
be utilized to help understand other fundamental related questions. An example
would be a more direct relation of the cosmological statistical mechanics to its
underlying gravitational dynamics. How does quasi-equilibrium constrain the
sum of energy states in the partition function? This, in turn is closely connected
to determining the basin of attraction for the distribution function of Eq.(1).
The basin of attraction provides insight into the set of initial conditions which
would evolve, through dynamical dissipation, into the observed distribution of
the galaxies. Cosmological models, and galaxy formation within them, would
then have to be consistent with such initial conditions.
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