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Abstract. We discuss the formation of the first structures in gravita-
tional N-body simulations. The role of two-body interaction is found to
be a crucial element and an analogy with the dynamics of the Coulomb
lattice, well-studied in solid state physics, is discussed.

The standard models of the formation of large scale structure of the universe
are based on the gravitational growth of small initial density fluctuations in a
homogeneous and isotropic medium (e.g. Peebles 1980). For example, in the so-
called Cold Dark Matter (CDM) model, particles interact only gravitationally
and are ’cold’, i.e. with very small initial velocity dispersion. This situation
allows one to model this system with a collisionless Boltzmann equation and, for
sufficiently large scales, pressure-less fluid equations. These fluid equations can
be solved in a perturbative way for small density fluctuations (see e.g. Peebles
1980). However, this treatment is inapplicable in the strong non-linear regime.
Then, the most widely used tool to study gravitational clustering in the various
regimes is N-body simulations (NBS) which are based on the computation of
the dynamics of self-gravitating particles in expanding universe.

These simulations can be performed by considering an infinite periodic sys-
tem, i.e. a finite system with periodic boundary condition. Despite the simplicity
of the system, in which dynamics are Newtonian on all but the smallest scales,
the analytic understanding of this crucial problem is limited to the regime of
very small fluctuations where a linear analysis can be performed. In the cosmo-
logical case, the problem can be approximated to Newtonian but the equation of
motions are modified because of the expanding background (Peebles, 1980). As
discussed below, we find it instructive to consider some simplified cases where
the expansion is not included and then study the differences introduced by space
expansion.

An important point should be stressed: for numerical reasons due to com-
puter limitations, the cosmological density field must be discretized into “macro-
particles”, interacting gravitationally, and which are tens of orders of magnitude
heavier than the (elementary) CDM particles. This procedure introduces dis-
creteness at a much larger scale than the discreteness inherent to the CDM
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particles. By discreteness we mean statistical and dynamical effects which are
not described by the self-gravitating fluid approximation. The discreteness has
different manifestations in the evolution of the system (see e.g. Baertschiger
et al., 2002 and references therein). In this context it is necessary to consider
the issue of the physical role of discrete fluctuations in the dynamics, which go
beyond a description where particles play the role of collisionless fluid elements
and the evolution can be understood in terms of a self-gravitating fluid.

In order to study the gravitational many-body problem, we have considered
a paradigmatic system consisting of a very simple initial particle distribution
represented by a slightly perturbed, simple cubic lattice with periodic boundary
conditions and zero initial velocities (Joyce et al., 2005). A perfect cubic lattice is
an unstable equilibrium configuration for gravitational dynamics, as the force on
each particle vanishes. A slightly perturbed lattice (see Fig.1) represents instead
a situation where the force on a particle is small and linearly proportional to the
displacements of all the particles from their lattice positions. When the system
is evolved for long enough times, complex non-linear structures arise, as shown
in Fig.1 (Right Panel). While the full understanding of this clustering dynamics
is not currently available, some steps have been made for what concerns the
evolution of the system at early times (Joyce et al., 2005, Baertschiger & Sylos
Labini, 2004).

Figure 1. Left Panel: Slightly perturbed lattice with zero initial ve-
locity dispersion. This is an orthogonal projection of a system with 323

particles. The force on a particle is small and linearly proportional to
the displacements of all the particles from their lattice positions. Right
Panel: When the system is evolved under its own gravity for long times
it creates complex non-linear structures characterized by the presence
of clusters of different sizes. When the size of the largest cluster be-
comes of the order of the box size, the simulation is dominated by finite
size effects.

The characterization of the gravitational evolution of this system for small
displacements, i.e. up to when two nearest particles collide, can be achieved by
a perturbative theory (Joyce et al., 2005). Up to a change in sign in the force,
the initial configuration is identical to the Coulomb lattice (or Wigner crystal)
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in solid-state physics (see e.g. Pines, 1963): by using standard techniques of
solid-state physics it is possible to develop an approximation to the evolution
of the gravitational many-body problem. The equation of motion of particles
moving under their mutual self-gravity in a static universe is

ẍi = −
∑

i 6=j

Gmj(xi − xj)
|xi − xj |3 , (1)

where for the sake of clarity we have not written explicitly the sum on
the replicas of the system. Here dots denote derivatives with respect to time
t, xi is the position of the ith particle, of mass mi

1. Perturbations from the
Coulomb lattice are described simply by Eq. (1), with Gm2 → −e2 (where e is
the electronic charge). By denoting xi(t) = R + u(R, t) where R is the lattice
vector of the ith particle and u(R, t) is the displacement of the particle from
R, and by expanding to linear order in u(R, t) about the equilibrium lattice
configuration (in which the force on each particle is exactly zero), we obtain

ü(R, t) = −
∑

R′
D(R−R′)u(R′, t) . (2)

In solid state physics, the matrix D is called, for any interaction, the dy-
namical matrix which, according to the Bloch theorem, is diagonalized by plane
waves in reciprocal space. The spectrum of eigenvalues is complex and as in
the case of the Coulomb lattice, eigenvectors show the characteristic branch
structure.

For example, in the Coulomb lattice there is the optical branch, describing
oscillations with plasma frequency ω2

p = 4πe2n0/m (where n0 is the electronic
number density) which in the gravitational case corresponds, for long wavelength
perturbations, to the evolution of instabilities predicted by an analogous fluid
description of the self-gravitating system (Joyce et al., 2005). Further it is
possible to characterize precisely, up to when two nearest particles collide, the
deviations from this fluid-like behaviour at shorter wavelengths arising from the
discrete nature of the system. For instance, there are also oscillating modes,
and modes which grow faster than the fluid one, which are absent in the fluid
description.

This analysis should be a useful step toward a precise quantitative under-
standing, which is currently lacking, of the role of discreteness in cosmological
NBS (see e.g. Melott and Shandarin, 1993). These simulations are most usu-
ally started from configurations which are simple cubic lattices perturbed in a
manner prescribed by a theoretical cosmological model and thus, at early times,
dynamical evolution can be studied as the paradigmatic case discussed above,

1Note that as written in Eq. (1) the infinite sum giving the force on a particle is not explicitly well
defined. It is calculated by solving the Poisson equation for the potential, with the mean mass
density subtracted in the source term. In the cosmological case this is appropriate, as the effect
of the mean density is absorbed in the Hubble expansion; in the case of the Coulomb lattice
it corresponds to the assumed presence of an oppositely charged neutralizing background. In
the non-expanding case the negative background can be intended as a trick used to make the
potential finite: however in the conditions we consider this does not affect the computation of
the force.
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with only a simple modification of the dynamical equations due to the expansion
of the Universe. The main difference is quantitative, namely in the expanding
case the growth of perturbations is power-law in time while in the non-expanding
case it is exponential (Joyce et al., 2005). Apart from this, no qualitative phys-
ical difference in the formed non-linear structures is apparent (see also Sylos
Labini et al., 2004).

One of the central questions in the context of gravitational NBS is whether
one may have some analytical predictions which relate the observed power-law
in the correlation function of the particles at late times with some features of
the initial particle configuration. For example it has been recently observed
(Sylos Labini et al., 2004) that in a broad class of gravitational NBS a universal
behaviour in the non-linear clustering develops, characterized by the exponent
of the conditional density. This statistical quantity is defined as

〈n(r)〉p =
〈n(r)n(0)〉
〈n(0)〉 , (3)

so that 〈n(~r)〉p dV gives the a-priori probability of finding 1 particles placed
in the infinitesimal volumes dV around ~r with the condition that the origin
of coordinates is occupied by a particle, i.e. it represents the average density
of particles seen by a fixed particle at a distance r from it. Once power-law
correlations are developed, i.e. 〈n(r)〉p ≈ r−γ with γ ≈ 1.8, the subsequent
evolution increases the range of scales where non-linear clustering is formed,
i.e. where 〈n(r)〉p À n0, by approximatively a simple rescaling: denoting by
〈n(r, t)〉p the conditional density at time t, one has

〈n(r, t + δ)〉p ≈ 〈n(a · r, t)〉p (4)
〈n(r)〉p ≈ r−γ for r < λ0(t)

where a < 0 is a constant which depends on the time (Baertschiger and Sylos
Labini, 2004) and λ0(t) is the crossover scale between strong (〈n(r)〉p À n0) and
weak (〈n(r)〉p ≈ n0) clustering. While the constant a, as well as λ0(t), depends
on the particular system considered it seems that the exponent γ is the same
in many different cases (Sylos Labini et al., 2004). Thus an important element
of the nature of clustering in the non-linear regime can be associated with what
is common to all these different simulations: their evolution in the non-linear
regime is dominated by fluctuations at small scales, which are similar in all
cases at the time this clustering develops. Such “shot-noise” fluctuations are in
fact intrinsic to any particle distribution. This corresponds to domination by
nearest neighbour interactions when the first non-linear structures are formed
(Baertschiger and Sylos Labini, 2004).

To study in detail this early non-linear dynamics, i.e. the growth of the first
non-linear correlations, we considered the gravitational evolution of a cold par-
ticle distribution with no correlations, i.e. a Poisson configuration (Baertschiger
and Sylos Labini, 2004). One may show that by treating this simple case in a
static universe as an ensemble of isolated two-body systems, one may understand
the origin of the first non-linear correlated structures. This is possible because:
(i) the full gravitational force probability distribution approaches the nearest-
neighbour force probability distribution at large values of the field and (ii) most
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of particles are mutually nearest-neighbours. The exponent of the conditional
density is then simply related to the functional form of the time evolved nearest
neighbours probability distribution, whose time dependence can be computed
by using Liouville theorem for the gravitational two-body system (Baertschiger
and Sylos Labini, 2004).

The fundamental open problem is that of understanding whether large non-
linear structures, which at late times contain many particles, are produced solely
by collisionless fluid dynamics, or whether the particle collisional processes (i.e.
discreteness effects) are important also in the long-term, or whether they are
made by a mix of these two effects. Important elements in this respect are
represented by the fact that the correlation function of the evolved system has
a strikingly similar functional form to the one generated at early times by two-
body interaction (described by Eq.4) and by the fact that aggregation proceeds
in a hierarchical, bottom-up manner (Baertschiger and Sylos Labini, 2004).
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