
Few-Body Problem: Theory and Computer Simulations
Annales Universitatis Turkuensis, Series 1A, Vol. 358, 2006
C. Flynn, ed.

Few-Body Regularizations

Seppo Mikkola

Tuorla Observatory, University of Turku, Finland

Abstract. The state-of-the-art in regularization of the few-body prob-
lem is concisely reviewed. For systems with comparable masses, the meth-
ods utilizing the Kustaanheimo-Stiefel (KS) transformation are generally
the most practical. These include the global regularization of all inter-
actions and the chain-method. Alternatively, one may use algorithmic
regularizations, such as the logarithmic Hamiltonian leapfrog or the time
transformed leapfrog. All these methods are useful for integration of
strongly interacting few-body systems, but only the time transformed
leapfrog can be used for arbitrary mass ratios.

1. Introduction

The well known 1/r2 singularity in the gravitational interaction is a major ob-
stacle in N-body simulations. For strongly interacting few-body systems various
regularization methods have been developed. The most successful of these is the
Kustaanheimo-Stiefel (KS) transformation (Kustaanheimo & Stiefel 1965). This
method was generalized for strongly interacting three-body systems by Aarseth
and Zare (1974) (AZ) and further Heggie (1974) invented the global regular-
ization method for N-body systems. This method was somewhat simplified by
Mikkola (1985) using a more economic notation. Another N-body method, in
which one body is a central reference body, was suggested by Zare (1974).

The Heggie method regularizes all the interactions at once but at the price
of introducing a large number of extra degrees of freedom.

Later Mikkola and Aarseth (1993) generalized the AZ-method for N-bodies
(CHAIN-method). This method uses a chain of interparticle vectors that are
transformed using KS, thus regularizing the interactions. The advantage intro-
duced was that there are no longer extra degrees of freedom. The changing
structure of the system is taken into account by appropriately switching the
chain.

Another way of regularizing the computation of motions is to use algo-
rithmic regularization (Mikkola & Tanikawa 1999ab, Preto & Tremaine 1999,
Mikkola & Aarseth 2002). These methods use a suitable time transformation
and algorithm, but no coordinate transformations, except possibly linear ones.

114

Few-Body Regularizations 115

2. Extended phase space and time transformations

A basic ingredient in regularization methods is the Poincare’s transformation to
extended phase space. The new Hamiltonian reads

Γ = g(p, q)(H(p, q, t) + B),

where B is the momentum of time with the initial value B(0) = −H(0). The
equations of motion are

p′ = −∂Γ
∂q

; q′ =
∂Γ
∂p

; t′ =
∂Γ
∂B

= g. (1)

Szebehely & Zare (1975), and Alexander, (1986) recommend g = 1/L, where
L = T + U = Lagrangian. Thus

Γ = (H + B)/L = (H − E)/L,

is a useful form for a time-transformed Hamiltonian.

3. Multiparticle regularizations by KS transformation

The KS-transformation of coordinates r and momenta p may be written

r = Q̂Q; p = Q̂P/(2Q2) (2)

Here Q̂ is the KS-matrix (e.g. Stiefel and Scheifele (1971) p. 24)

Q̂ =

(
Q1 −Q2 −Q3 Q4
Q2 Q1 −Q4 −Q3
Q3 Q4 Q1 Q2
Q4 −Q3 Q2 −Q1

)
. (3)

In the two-body case one may use

dt

ds
= r = Q2 (4)

to obtain the new Hamiltonian

Γ = r(H + B) =
1
8
P2 −M + BQ2, (5)

where H = 1
2p2 − M/r and B = −H(0) is the numerical value of the binding

energy.
When applied to more complicated systems, the final result is no longer an

harmonic oscillator but close approaches are regularized anyway.
Let a multiparticle Hamiltonian in the centre-of-mass system be

H =
∑
ν

p2
ν/(2mν)−

∑

i<j

mimj/rij

and let us introduce new coordinates

Xk = rik − rjk
,

116 Mikkola

-2

 0

 2

 4

 6

 8

 10

-1 -0.5 0 0.5 1 1.5

C

H

Z

Figure 1. Regularized interactions (schematically) in the Zare
method (Z), the global method of Heggie (H) and the chain method
(C).

then we can use the generating function

S =
∑

k

Wk ·Xk =
∑

k

Wk · (rik − rjk
). (6)

In terms of the new momenta W the old ones are pν = ∂S
∂rν

=
∑

k Wk · (δνik −
δνjk

), where the δ’s are the Kronecker symbols. Thus the new Hamiltonian reads

H =
1
2

∑

αβ

TαβWα ·Wβ −
∑

k

mikmjk

|Xk| −
∑

i<j, (i,j)6∈{ik,jk}

mimj

rij
, (7)

where

Tαβ =
∑
ν

1
mν

(δνiα − δνjα)(δνiβ − δνjβ
),

Few-Body Regularizations 117

and the latter potential term
∑

i<j, (i,j) 6∈{ik,jk}

mimj

rij

contains all the distances rij = rij(X1, X2...) that are not included among the
Xk. After application of the KS transformation to every momentum-coordinate
pair W, X → P, Q one can obtain the regularized Hamiltonian Γ = (T − U −
E)/(T + U) and form the canonical equations of motion. Note that the number
of new variables may exceed the number of the old ones. This, however, is no
problem: all the physical results remain correct (Heggie, 1974).

The above formulation is completely general at least to the point that all the
well known methods, the Zare method, Heggie’s global regularization and the
chain method are included. The vectors X of those methods are schematically
illustrated in Figure 1.

Among these methods, Heggie’s global regularization is actually simplest
to use and program, since one needs no criteria for selecting the vectors (X) to
be regularized. Also the potential term due to the non-regularized potential do
not appear in this method. In the other methods, however, one must somehow
deem which interactions are the most critical and need regularization. As already
mentioned, the present formulation is somewhat more general than any of the
previous ones. One can regularize any interparticle vector. Thus any kind
of branching and looping chains can be handled. This could be seen as an
intermediate form between the Heggie method and the chain. However, it is not
clear if such alternatives are actually more useful than chain.

4. Algorithmic regularization

By algorithmic regularization we mean here a numerical method in which the al-
gorithm gives regular results at collision of two bodies without using coordinate
transformation. The first such method was discovered simultaneously and inde-
pendently by Mikkola and Tanikawa (1999ab) and Preto and Tremaine (1999).
This particular method uses the logarithmic Hamiltonian (LogH)

Λ = ln(T + B)− ln(U), (8)

which gives equations of motion

t′ =
∂Λ
∂B

= 1/(T + B); r′k = vk/(T + B); v′k = Ak/U (9)

where vk = ṙk and Ak = ∂U
∂rk

/mk are the velocity and acceleration correspond-
ingly.

It is important to note that the derivatives of coordinates only depend on
velocities and vice versa. This makes a simple leapfrog algorithm possible (see
below). The most important feature is that the resulting leapfrog is exact for
two-body motion, except for a phase error, and thus regularizes close approaches.

The derivation of the logarithmic Hamiltonian equations of motion can also
be done in the way that one transforms the time in the Newtonian equations

118 Mikkola

of motion v̇ = A; ṙ = v by dividing the first equation by U and the second
one by T + B, which gives correct equations (with the additional equation t′ =
1/(T + B)) since U = T + B along the orbit, due to energy conservation.

The Time Transformed Leapfrog (TTL) method is a generalization of this
idea (Mikkola & Aarseth 2002). In the time transformation one takes some other
function Ω(r) in place of the potential U and defines an auxiliary quantity W

by the differential equation Ẇ = Ω̇ = ∂Ω
∂r · v.

The resulting TTL equations read

t′ = 1/W ; r′k =
1
W

∂T

∂pk
; v′k =

1
Ω

Ak; W ′ =
∑

k

∂Ω
∂rk

· vk/Ω, (10)

and these can also be used to construct a leapfrog-like mapping which, for suit-
able functions Ω, are asymptotically exact for two-body motion near collision.
It can be shown that TTL is mathematically equivalent to LogH if one takes
Ω = U .

4.1. LogH leapfrog

First one computes the constant B = −T +U from initial values. The equations
of motion can be used to define the basic subroutines X(s) and V(s) as

X(s) : δt = s/(T + B); rk → rk + δt vk; t → t + δt (11)
and

V(s) : δ̃t = s/U ; p → pk + δ̃tAk (12)

which can be called in a sequence

X(h/2)V(h)X(h/2),

using always the most recent results as input for the next operation.

4.2. TTL

Here one first evaluates the initial value of W = Ω, then uses the leapfrog
subroutines

X(s) : δt = s/W ; rk → rk + δt vk; t → t + δt (13)

V(s) : δ̃t = s/Ω; δvk = δ̃tAk; W → W + δ̃t
∑

k

∂Ω
∂rk

· (vk +
1
2
δvk);

vk → vk + δvk, (14)

advancing the coordinates and velocities using the operation sequence

X(h/2)V(h)X(h/2)

repeatedly.
For Ω one may use any suitable function, but usually it is advantageous to

take

Few-Body Regularizations 119

Ω =
∑

i<j

Ωij

rij
,

where

Ωij = 1, or Ωij = mimj ,

the latter choice being recommendable if the masses are comparable.
The leapfrog alone is, however, in many cases not accurate enough. The

accuracy can be improved e.g. by using the higher order leapfrog algorithms of
Yoshida (1990). Alternatively one may use the extrapolation method (Press et
al. 1986).

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

X1 X2

X3

m1m2

m3

Figure 2. Labeling of vectors in the three-body regularization.

4.3. A simple LogH algorithm for the three-body problem

The three-body problem is still one of the most studied problems in few-body
dynamics. Therefore it may be of interest to consider in more detail a simple
regular three-body algorithm. This also serves as further illustration of the use
of the algorithmic regularization.

Following Heggie (1974) we use the three interparticle vectors (see Figure
2)

X1 = r3 − r2; X2 = r1 − r3; X3 = r2 − r1. (15)

120 Mikkola

as new coordinates. Let the corresponding velocities be Vk = Ẋk, then the
kinetic and potential energies can be written

T =
1

4M

∑

i<j

mimjV2
kij

; U =
∑

i<j

mimj

|Xkij |
, (16)

where M =
∑

k mk is the total mass and kij = 6− i− j.
The equations of motion are

Ẋk = Vk; V̇k = −M
Xk

|Xk|3 + mk

∑
ν

Xν

|Xν |3 , (17)

and after the application of the logarithmic Hamiltonian modification they read

t′ = 1/(T + B); X′
k = Ẋk/(T + B); V′

k = V̇k/U, (18)

which are suitable for the leapfrog algorithm, given in equations (11) and
(12), as well as for Yoshida’s higher order leapfrogs.

The usage of the relative vectors, instead of some inertial coordinates, is
advantageous in attempting to avoid large roundoff effects. One could also
integrate only two of the triangle sides, obtaining the remaining one from the
conditions ∑

k

Xk = 0;
∑

k

Vk = 0.

However this hardly reduces the computational effort required by the method.
Instead one may, occasionally, compute the longest side, and the corresponding
velocity, from the above triangle conditions. Note, however, that the sums of
the sides are not only integrals of the exact solution, but they are also exactly
conserved by the leapfrog mapping.

The transformation from the variables X to centre-of-mass coordinates r
can be done as

r1 =
(m3X2 −m2X3)

M
; r2 =

(m1X3 −m3X1)
M

; r3 =
(m2X1 −m1X2)

M
, (19)

and the velocities obey the same rule.

5. Final remarks

It is necessary to emphasize the importance of the chain structure, not only
in the CHAIN-method, but also when one uses one or other of the algorithmic
regularizations. The reason is roundoff errors. If one uses centre-of-mass coordi-
nates, then the relative coordinates of a distant close pair are differences of large
numbers and there is considerable cancellation leading to irrecoverable errors.
The author’s impressions, based on experience, can be summarized as:

1. Heggie’s method is the simplest to program (of the KS-based methods).

2. CHAIN is the most efficient KS-regularized code.

Few-Body Regularizations 121

3. LogH is a good alternative for the lazy programmer.

4. TTL is, thus far, the only one that can handle large mass ratios although
this particular problem is still partly unsolved.

5. For the chain algorithm, use of a high order numerical integrator, such as
the extrapolation method (Press et al. 1986), is necessary. Similarly the
TTL requires extrapolation to improve the leapfrog results. The LogH-
method can also be improved with extrapolation, alternatively one may
use a higher order leapfrog (Yoshida, 1990).

References

Aarseth, S. J. and Zare, K., 1974, Cel. Mech., 10, 185–205.
Alexander, M. E., 1986, J. Comp. Phys., 64, 195–219.
Heggie, D. C., 1974, Cel. Mech., 10, 217–241.
Kustaanheimo, P. and Stiefel, E., 1965, J. Reine Angew. Math., 218, 204–219.
Mikkola, S., 1985, Mon. Not. R. Astr. Soc, 215, 171–177.
Mikkola, S. & Aarseth, S. J., 1993, Celest. Mech. Dyn. Astron. 57, 439
Mikkola, S. & Tanikawa, K, 1999a, Celestial Mechanics and Dynamical Astron-

omy, 74, 287-295.
Mikkola, S. & Tanikawa, K., 1999b, Mon. Not. R. Astr. Soc, 310, 745-749.
Mikkola, S. and Aarseth, S., 2002, Celestial Mechanics and Dynamical Astron-

omy, 84, 343-354.
Press, W. H., Flannery, B. P.,Teukolsky, S. A. and Wetterling, W. T., 1986,

Numerical Recipes, Cambridge University Press.
Preto, M. and Tremaine, S., 1999, Astron. J., 118, 2532–2541.
Stiefel, E. L. and Scheifele, G., 1971, Linear and Regular Celestial Mechanics,

Springer, Berlin.
Szebehely, V. and Zare, K, 1975, Cel. Mech., 11, 469.
Yoshida, H. , 1990, Phys. Lett. A., 150, 262–268.
Zare, K., 1974, Cel. Mech., 10, 207–215.

