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Abstract. We review the concepts of Rényi information and multifrac-
tals, and discuss their relation to the probability distribution function.
These measurements can provide a complete statistical description by
probing the higher moments of the galaxy distribution. We apply these
high-moment measurements to mid-infrared samples of galaxies detected
by the Infrared Array Camera onboard the Spitzer Space Telescope, and
discuss in brief the implications for computer simulations.

1. Probability Distribution, Rényi Information, and Multifractals

The galaxy spatial distribution, when seen as an N-body process in an expanding
universe, is most often described statistically and subsequently physical inter-
pretations sought (Saslaw, this volume). The probability distribution function,
describing the probability of finding a given number of galaxies in a given-size
volume, is the most general description which contains all the moments of the
galaxy spatial distribution. These statistical moments can be polymorphically
measured or described by other statistical properties, such as the Rényi infor-
mation and multifractals.

Suppose we cover a sample of Ng galaxies by a collection of Nc non-overlapping
cells. The β-order Rényi information Iβ is defined as (Rényi 1970)

Iβ =
1

β − 1
log Σpβ, (1)

where p is the probability of finding a galaxy in a cell, and the sum is over all
cells. The definition shows the relation between the β-order Rényi information
and the β-moment. More specifically, the β-order Rényi information can be
written as

Iβ =
1

β − 1
(log

Nc

Nβ
g

+ log ΣiN
β
i f(Ni)), (2)

where f(N) is the probability distribution function, and the sum is now over
numbers of galaxies contained in the cells.

Mathematically the multifractal dimensions can be defined as

D(β) = lim
r−→0

Iβ(r)
log r

, (3)
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where r is the cell size. Physically the limit cannot be achieved as r is bounded
by the average galaxy separation. Practically the multifractal dimensions are
measured by the slopes of the Iβ(r) versus log r relation, which can be established
by experiment. Note that this definition is consistent with the more familiar
one based on the generalized correlation integral. The multifractals, apart from
their geometrical image of spatial occupation at multiple orders, have a clear
statistical meaning as measures of the moments of a probability distribution.

2. Results from the Spitzer First Look Survey

A previous study (Fang et al 2004) measured the 2-point angular correlation
functions for galaxy samples of all four wavelengths of the Infrared Array Camera
(IRAC) in the Spitzer First Look Survey (FLS). Measuring the second moment,
2-point statistics does not completely describe a non-Gaussian spatial density
field. Here we extend the study to measuring high moments for the same sam-
ples, using the probability distribution function, the Rényi information, and the
multifractal descriptions. For all measurements the two-dimensional area cov-
ered by the IRAC samples is divided into contiguous square cells of varying sizes.
We discard cells that contain invalid mosaic pixels, from the masks that were
used to establish the IRAC samples. The boundary effect and selection bias are
at minimum.

Figure 1. The IRAC sample counts-in-cells histograms (cell sizes in-
crease to the right) and their theoretical descriptions (see text).

A counts-in-cells method is used to establish the probability distribution.
In Figure 1 we show our results. Each sample is measured at 3 different scales.
For each measurement we plot the fit of the theoretical Gravitational Quasi-
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equilibrium Distribution Function (Saslaw and Hamilton 1984; solid lines) and
the Poisson distribution of the same average galaxy count (dotted lines) for
comparisons. The deviation from a Poisson distribution, caused by galaxy clus-
tering, is significant at large scales. The gravitational distribution function fits
well at all scales. The value of the fitting parameter b shows the strength of
clustering. Here b is the ratio of the correlation potential energy and twice the
kinetic energy (Saslaw, this volume).

Figure 2. Scaling of Rényi information with cell sizes.

For the first time, we explicitly apply the Rényi Information to describe
the galaxy spatial distribution. In Figure 2 we plot the Rényi information mea-
surements, in “bits” of unit log 2, over a range of cell sizes placed on the IRAC
samples, and from β = 1 up to 20 (bottom to top). The crowding of the lines
at high β indicates that the higher moments can be constrained well from lower
moment measurements. The multifractal dimensions can be read from the slopes
of these lines. It is significant that these lines are not straight, indicating that
the multifractal properties of galaxy distribution vary with scale. The IRAC
galaxies appear to occupy space compactly at small scales, and distribute more
uniformly at large scales with the fractal dimensions approaching 2. Our flux-
limited 2-dimensional samples contain degenerate galaxy evolution in the third
dimension. It would be compelling if the scale-dependency of multifractal di-
mensions is also found in the 3-dimensional galaxy distribution, which may be
indications of different phases of the gravitational relaxation.

Using an average measure over the scales, the multifractal dimensions of in-
creasing information orders decrease and approach a limit, the so-called ”struc-
ture function”. This is illustrated in the left panel of Figure 3. The right panel
shows the spectra of the multifractal scaling index, related to multifractal di-
mensions by a Legendre transformation. As the spectra go to zero, the scaling
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Figure 3. Left panel: multifractal dimensions versus information or-
der. Right panel: the spectra of the multifractal scaling index.

index measures the finite value of the multifractal dimension at information or-
der of infinity. In a different form the spectra contain a statistically complete
description of the probability distribution.

3. Implications on Computer Simulations

A multifractal can be most straightforwardly simulated by a multiplicative cas-
cade process. The infinite number of statistical moments does not necessarily
imply infinite number of parameters for a simulation, if the structure function
is known for a given generator of the multiplicative process. For example such
function exists for generators of a class of extremal Lévy stable distributions
(Schertzer and Lovejoy 1987). The stable distributions are interesting as they
replace Gaussian in the generalized Central Limit Theorem if the variances of
the component distributions are not finite. However, the scale-dependency of
the galaxy multifractality seems to imply that no distribution, stable or not,
with a single set of parameters can generate a galaxy spatial distribution in a
multiplicative cascade process. Nevertheless, such a process is less expensive
than N-body simulation, and explorations of the kind are worthwhile.
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