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Abstract.
We study extrasolar planetary systems under the influence of per-

turbative effects from nearby stars. If the mass of the perturbing star is
sufficiently small, the velocity sufficiently large, or its distance sufficiently
large, the planet’s motion is integrable. Conditions for the extrasolar
planet’s motion without escape and exchange are derived numerically.

1. Introduction

The discovery of extrasolar planets and planetary systems has raised many re-
search problems for astronomers. One important problem is that of orbital
evolution and stability of extrasolar planetary motion (Laughlin and Adams,
1999; Kiseleva-Eggleton et al, 2002; Menou and Tabachnic, 2003).

We are presently investigating the properties of extrasolar planetary per-
turbations under the influence of nearby stars. If the system contains only one
planet, a nearby star can be the main driver of dynamical evolution.

The problem of binary-single mass scattering has been investigated in many
papers, mainly for the case of equal masses (e.g. Valtonen, 1988; Hut, 1984;
Heggie, 1975).

Here we discuss the integrability of the N -body problem and stability of a
planet’s motion under the influence of nearby stars.

2. On the integrability of the N-body problem

It is well known that the classical N-body problem is nonintegrable, but this
statement calls for refinement. Nonintegrability has been proved only in sev-
eral regions of phase space and parameter space. But in addition to domains
containing complicated, chaotic trajectories, there are domains with very simple
trajectories. For such simple motions, integrability in the classical sense has been
proved (Sokolov, 1986; Sokolov and Kholshevnikov, 1987a; Sokolov and Khol-
shevnikov, 1987b; Sokolov and Kholshevnikov, 1992; Sokolov, 2001; Sokolov and
Kholshevnikov, 2004; Sokolov, 2005). This is termed ‘regional integrability’ (the
notion was introduced by Prof. K. V. Kholshevnikov). Regions with integrable
motions can be large in size and simple in structure.

Regional integrability refers to the existance of a complete set of smooth
independent autonomous functions (integrals), which are constant along each

131



132 Kuteeva, Sokolov

tragectory in the region. Regional integrability implies the stability of planetary
motion and other important properties.

As long ago as the work of J. Chazy, and later V. M. Alexeev arguments have
been presented on behalf of integrability of the 3–body problem in the domain
of these simple trajectories. As an example, Alexeev (1981) has formulated
a statement about the integrability of the 3–body problem in the domain of
hyperbolic, hyperbolo-elliptic and hyperbolo-parabolic motions.

Sokolov and Kholshevnikov (1987a) have shown that the following holds:
Let mi be masses (i = 1, 2, . . .N), ~ri(0) initial positions, ~vi(0) initial veloc-

ities, G the gravitational constant, and the linear motions ~ri(t) = ~ri(0) + ~vi(0)t
permit no collisions between bodies. Then the system with masses M, mi, initial
positions R,~ri, and initial velocities V,~vi is integrable, if the value of GM/RV 2

is sufficiently small.
In other words, conditions for the integrability are sufficiently small masses,

or sufficiently large distances between bodies, or sufficiently large velocities of
bodies.

The N-body problem is integrable not only for single fast moving masses,
but for close binaries too (Sokolov and Kholshevnikov, 1987b; Sokolov, 2001;
Sokolov and Kholshevnikov, 2004). For example, the system “Sun-planet-star”
is integrable (Sokolov, 1986) for sufficiently small star mass, or sufficiently large
star distance (at pericenter) or sufficiently large star velocity. It is interesting to
compare the integrability conditions with the characteristics of Sun neighbouring
stars (Mullary and Orlov, 1996). The restricted problem “Sun-planet-star” is
usually integrable for known nearby stars (Sokolov, 2001).

3. Conditions for a planet’s orbital stability

If the approach distance of a neighbouring star is sufficiently small, the planetary
system becames unstable, and escape or capture of planet takes place. We derive
this stability boundary numerically. For a fixed neighbouring star of mass m
and velocity “at infinity” v, we vary the approach distance p. The planet’s orbit
is termed stable if elliptical motion is retained for all initial positions of the
planet on the unperturbed orbit. Figure 1 shows the boundaries of stability of
an initially circular planetary orbit for a star of 1 solar mass. Note that we
use as mass unit the solar mass, while the unit of distance is the unperturbed
radius of the planet’s orbit, and the unit of velocity is the planet’s unperturbed
velocity.

Stable planetary motion for mass m is found to correspond to the following
conditions on p:

• for m = 1 : p > 4.58936v−0.58566,

• for m = 2 : p > 6.01901v−0.602973,

• for m = 3 : p > 7.16129v−0.618055,

• for m = 10 : p > 12.7775v−0.629349.
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Figure 1. The boundaries of stability of an initially circular planetary
orbit star for a star of 1 solar mass. Here v is the orbital velocity and
p is the period, both expressed in units of the unperturbed orbital
velocity and period.

If the approach distance p of the neighbouring star is large, its velocity not
very large and the perturbations small, the planet’s semimajor axis returns quite
closely to its initial value after the interaction.

4. Conclusions

The N -body problem is almost always integrable, if the velocities of the bodies
are sufficiently large. In particular, the 3-body problem consisting of a “home
star, planet and fly-by star” is integrable and a planet’s motion is stable for a
large velocity of the fly-by star. Stability boundaries of the planet’s motion under
the influence of a nearby star have been derived numerically. The planetary
system can break down if the approach distance and radius of planet’s orbit are
values of the same order.

Acknowledgments This study was supported by the Russian Founda-
tion for Basic Research (grants 05-02-17408, 06-02-16795), by the Scientific Pro-
gram “Russian Universities” (project ur.02.01.301), and by the Leading Scientific
School (grants NSh-1078.2003.02, NSh-4929.2006.2).



134 Kuteeva, Sokolov

References

Laughlin, G., Adams, F.C., 1999, ApJ, 526, 881
Kiseleva-Eggleton, L., Bois, E., Rambaux, N., Dvorak, R., 2002, ApJLetters,

578, L145
Menou, K., Tabachnik, S., 2003, ApJ, 583, 473
Valtonen, M.J., 1988, Vistas in Astronomy, vol.32, p.23
Hut, P 1984, ApJSUpp, 55, 301
Heggie, D.C., 1975, MNRAS, 173, 729
Sokolov, L.L., 1986, Trudy Tomsk. Gos. Univ., Ser. Astron. and Geodes., vol

14, p93
Sokolov, L.L., Kholshevnikov, K.V., 1987a. Sov. Astron. Lett., 12, 235
Sokolov, L.L., Kholshevnikov, K.V., 1987b. Trudy Astron.Obs. Leningrad Gos.

University, vol 41, p175
Sokolov, L.L., Kholshevnikov, K.V., 1992, “Differenetial Equations”, v.28, N3,

p.370-373.
Sokolov, L.L., 2001, in Stellar Dynamics: from Classic to Modern. Proceedings

of the Int. Conf. held in Saint Petersburg, August 21-27, 2000. Ed.
L.P.Ossipkov and I.I.Nikiforov, Saint Peterburg State University, p243

Sokolov, L.L., Kholshevnikov, K.V., 2004. IAA Transactions. No.11, p151
Sokolov, L.L., 2005, Vestnik SPbU, 1,1.
Alexeev, V.M., 1981, Usp.Mat.Nauk, v.36, No.4, p161 (Russ. Math. Surveys,

v.36, No.4, pp.181-195).
Mullary, A.A., Orlov, V.V., 1996, Earth, Moon and Planets, v.72, pp.19-23.


