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Aim & Outline

• AIM: To introduce N-Body astrophysicists to post-Newtonian
(PN) approximation, useful to describe the orbiting dynamics of
compact objects

Outline
• PN approach to General Relativity; why it is interesting ? & what can it

provide ..

• Symbolic demonstration of a PN-computation

• Solving PN-accurate dynamics: subtitles

• Going beyond PN-accurate dynamics & 3-Body interactions



Motivations:I

• Coalescing black-hole binaries have become the focus of a large
number of astrophysically & theoretically motivated analytic,
semi-analytic & numerical investigations

• Most promising sources of Gravitational Waves (GWs) for LIGO/VIRGO

GW astronomy with LISA/ SKA will require GWs from Coalescing
Massive Black holes.

• Recoiling black holes associated with binary black hole merger should
have observational & cosmological consequences

• We need detailed analysis of the dynamics of compact binaries in GR



PN approximation:I

• In General Relativity (GR), zeroth order approximation gives Newtonian
gravity

• nPN order: corrections of order

(v
c

)2n
∼

(
Gm
rc2

)n

to the Newtonian gravity

m, v & r denote total mass, orbital velocity & separation

• Black holes & neutron stars are modeled as point particles



PN approximation:II

• In the case of non-spinning compact binaries, for LIGO/VIRGO
applications, one needs to tackle two problems (usually analyzed
separately)

• Problem of finding equations of motion ẍ

• Problem of computing gravitational-wave luminosity L, h×,+

ẍ N 1PN 2PN 2.5PN 3PN 3.5PN 4PN 4.5PN 5PN 5.5PN 6PN

L — — — N — 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN

h×,+ — — N 0.5N 1PN 1.5PN 2PN 2.5PN 3PN



Motivations:II

• The response function of the laser-interferometric detector to
gravitational waves from coalescing compact binary in circular orbits:

h(t) ≡ ∆L/L =
C
d

(
φ̇(t)

)2/3
sin

(
2φ(t) + α

)
, (1)

d is the distance of the binary to the Earth; C and α are some
constants,

φ(t) is the orbital phase of the binary &
(
φ̇(t) ≡ dφ(t)

/
dt

)
.

• The secular orbital phase φ = φ(t) is computed from the balance
equation dE

dt = −L

• The expression for h(t) in terms of φ & φ̇ requires h×,+



Motivations:III

• GWs from ICBs are being searched by Matched Filtering theoretical
template sets against the output of LIGO/VIRGO

• Theoretical templates should match the expected (& weak) inspiral
signals to within a fraction of a GW cycle in the sensitive bandwidth

• This requires inclusion of higher order PN terms in the evolution of φ(t)
appearing in h(t)



Motivations:IV
• The accumulated number of gravitational-wave cycles,
NGW ≡

∫
(f/ḟ )df , at a PN order in a LIGO/VIRGO-type detector

Initial & final values of f are 10 Hz & 1/(63/2πm) Hz

• It clearly shows 2PN is NOT sufficient

• Are we justified to use PN approximation when r/m ∼ 6 ?

• We can not treat ICBs as test-particle in a Sch. BH space-time

2× 1.4M⊙ 10M⊙ + 1.4M⊙ 2× 10M⊙

Newtonian 16,050 3580 600
First PN 439(104) 212(26) 59(14)
Tail (1.5PN) −208 −180 −51
Second PN 9(3) 10(2) 4(1)



PN quantities
For comparable mass non-spinning compact binaries in circular orbits,
following quantities are available to 3/3.5PN order
they are sufficient to describe accurately the inspiral regime

• 3PN accurate dynamical (orbital) energy E(x) as a PN series in

x =
(
G m ω3PN/c3

)2/3

ω3PN(t) the 3PN accurate orbital angular frequency
Damour, Jaranowski & Schäfer (2001)

• 3.5PN accurate expression for GW energy luminosityL(x)
Blanchet et.al (2002) & (2005)

• 3PN amplitude corrected expressions for h+(t) & h×(t) in terms of
the orbital phase φ(t) and x(t)
Blanchet et.al (2008)

• Approximation techniques that describe inspiralling compact binaries
usually require that (v/c)2 ∼ (G m

c2 r ) [ slow-motion & weak-fields ]



Point particles
• Effacement property allows to reduce the problem of motion of

centers of mass of N bodies to the problem of motion of N
point-masses [ Arguments due to T. Damour]

• Ellipticity due to tidal distortions arising from Gravitational interactions

ǫ ∼
(

G M L
R3

)
(

G M
L2

) ∼
(

L
R

)3

(2)

Tidal quadrupole moments ∼ ǫM L2 & structure dependent interbody
forces FSt ∼ GǫM2 L2/R4

FSt

FN

∼ FSt

/
G M2

R2 ∼ ǫ L2/R2 ∼ (L/R)
5 (3)

For compact objects, L ∼ G M/c2

• This→ FSt

FN
∼

(
G M
c2 R

)5
; 5PN order ...



How to get Newtonian dynamics from GR

• For a slowly moving test-particle in quasi-stationary & weak
gravitational field

gµ ν = ηµ ν + hµ ν , |hµ ν ≪ 1| (4)

The geodesic equation d2xµ

dτ 2 = −Γµ
α β

dxα

dτ
dxβ

dτ becomes

d2x i

dτ2 = −Γi
α β

dxα

dτ
dxβ

dτ
(5)

In our case dx0

dτ ∼ 1 & dx i

dτ ∼ 0

d2x i

dt2 = −Γi
0 0 ∼ −

(
1
2

h0 0 ,i − h0 i ,0

)
(6)

d2x i

dt2 ∼
1
2

h0 0 ,i → ẍ = −▽φ (7)

This => g0 0 = −(1 + 2φ)



Quantities derivable from
PN-accurate dynamics



PN-accurate compact binary dynamics:I

• By iterating Einstein’s field equations,in principle, it is possible to
compute 3PN-accurate Lagrangian

Lharmonic ≡ L[yA(t), vA(t), aA(t)] ,A=1,2&i=1,2,3) (8)

instantaneous positions y i
A(t) ≡ yA(t)

coordinate velocities v i
A(t) ≡ vA(t) = dyA/dt,

coordinate accelerations ai
A(t) ≡ aA(t) = dvA/dt.

• The explicit derivation of 1PN-accurate Lagrangian will be
demonstrated later..

• It provides a number of useful quantities ..

• We neglect the effects of radiation reaction..



PN-accurate compact binary dynamics:II

• To 1PN accuracy 1←→ 2

L =
Gm1m2

2r12
+

m1v2
1

2
+

1
c2

{
− G2m2

1m2

2r2
12

+
m1v4

1

8

+
Gm1m2

r12

(
− 1

4
(n12v1)(n12v2) +

3
2

v2
1 −

7
4

(v1v2)

)}
(9)

n12 = (y1 − y2)/r12, and the scalar products are written e.g.
(n12v2) = n12.v2.

•

E =
m1v2

1

2
− Gm1m2

2r12
+

1
c2

{
G2m2

1m2

2r2
12

+
3m1v4

1

8

+
Gm1m2

r12

(
− 1

4
(n12v1)(n12v2) +

3
2

v2
1 −

7
4

(v1v2)

)}
(10)



PN-accurate compact binary dynamics:III

• 1PN-accurate linear momentum

P i = m1v i
1 +

1
c2

{
− ni

12
Gm1m2

2r12
(n12v1)

+ v i
1

(
− Gm1m2

2r12
+

m1v2
1

2

)}
(11)

• 1PN-accurate angular momentum

J i = εijk m1y j
1v k

1 +
1
c2 εijk

{
y j

1v k
1

(
3Gm1m2

r12
+

m1v2
1

2

)

− y j
1v k

2
7Gm1m2

2r12
+ y j

1yk
2

Gm1m2

2r2
12

(n12v1)

}
(12)

• 1PN-accurate COM integral Gi = P i t + K i

Gi = m1y i
1 +

1
c2

{
y i

1

(
− Gm1m2

2r12
+

m1v2
1

2

)}
(13)



PN-accurate compact binary dynamics:IV

• In the COM frame K ≡ P ≡ 0,

y i
1 = η y i +

η δ

2 c2

{
v2 − G m

r

}
y i

y i
2 = −η y i +

η δ

2 c2

{
v2 − G m

r

}
y i (14)

η = µ/m; δ = (m1 −m2)/m.

•

v̇ ≡ v̇1 − v̇2 = −G m
r2 n +

G m
c2 r

{(
...

)
n+

(
...

)
v
}

(15)

For general orbits, we know v̇ to O(1/c7) & conserved quantities to
O(1/c6) order

More details in Andrade, Blanchet & Faye, gr-qc/0011063



Usable 3.5PN v̇, E&J i

• ẍ for non-spinning comparable mass compact binaries to 3.5PN order in
Eqs. (2.7),(2.8) & (2.9) in T. Mora & C. M. Will, Phys. Rev. D 69, 104021
(2004)

a ≡
d2x
dt2

= −

„

m
r3

«»„

1 + A
«

n + B v
–

A = A1(r , ṙ , φ̇, m, η) + A2(r , ṙ , φ̇, m, η) + A2.5(r , ṙ , φ̇, m, η)

+ A3(r , ṙ , φ̇, m, η) + A3.5(r , ṙ , φ̇, m, η)

Similar expressions for B (16)

• 3PN-accurate conserved orbital energy & angular momentum are given
by Eq. (2.11) & (2.12)

E = E0 + E1 + E2 + E3

E0 = µ

(
v2

2
− m

r

)
,

J = J0 + J1 + J2 + J3

J0 = µ r × v (17)



h×,+:I

• GW polarizations h×,+ are defined

h+ =
1
2

(
pi pj − qi qj

)
hTT

ij , (18)

hTT
ij , the transverse-traceless (TT) part of the radiation field

hTT
ij =

2G
c4r ′

{
I(2)
ij +

1
c

[
1
3

n′
aI(3)

ija +
4
3
εab(iJ

(2)
j)a n′

b

]
+ ......

}TT

(19)

Aij
TT = Alm(P il P jm − 1

2P ijP lm), where P ij = δij − n′i n′j ; n′i : unit vector
from source to observer

I ij ; PN-accurate mass quadrupole moment & J ij ; current quadrupole
moment

• hTT
ij is expressible in terms of STF multipoles of source densities;

usually computed via Blanchet-Damour-Iyer formalism



h×,+:II

• hTT
ij analogues to Aj appearing in electromagnetism;

Aj = 1
c r ′d

T
j ; dT

j ≡ Pjk dk

Lem ∝ r ′2
∫ (

Ȧj Ȧj

)
dΩ(n′) → 1

c3 d̈T
j d̈T

j (20)

• However, in GR, there are NO ‘mass‘ dipole & ‘mass’ magnetic dipole
radiations as total P i & J i are conserved

d̈j =
∑

A

mA ẍA
j =

∑

A

pA
j → 0 (21)

‘mass ’ magnetic dipole

µi ∝ εijk

∑

A

x j
A

(
mA v k

A

)
=

∑

A

JA
j → 0 (22)

Therefore, the lowest-order radiation in GR is quadrupolar ...



h×,+:III

• The radiate energy loss (-ve of the GW luminosity) can be computed

(
dE
dt

)FZ = − c3 r ′2

32πG

∫ (
ḣTT

km ḣTT
km

)
dΩ(n′)

= −G
c5

{
1
5

I(3)
ij I(3)

ij +
1
c2

[
1

189
I(4)
ijk I(4)

ijk +
16
45

J (3)
ij J (3)

ij

]

+ O(c−3
}

(23)

• For circular inspiral, the above quantity is computed to 3.5PN order [
neglected terms are O(c−8 order in the above Eq. ]

• 3PN accurate orbital energy, 3.5PN accurate L & 3PN accurate
expressions for h×,+ are the crucial quantities to do astrophysics with
eventual GW observations of inspiralling compact binaries



GW search templates



PN quantities
Blanchet, Damour, Schäfer & their collaborators, after
many years of computations, provided FOUR valuable expressions for
compact binaries in PN accurate circular orbits

• 3PN accurate dynamical (orbital) energy E(x) as a PN series in

x =
(
G m ω3PN/c3

)2/3

ω3PN(t) the 3PN accurate orbital angular frequency
Damour, Jaranowski & Schäfer (2001)

• 3.5PN accurate expression for GW energy luminosityL(x)
Blanchet et.al (2002) & (2005)

• 3PN amplitude corrected expressions for h+(t) & h×(t) in t erms
of the orbital phase φ(t) and x(t)
Blanchet et.al (2008)



LAL Routines

The LSC Algorithms Library (LAL) employs these inputs to construct various
types of search templates

TaylorT1 Damour, Iyer & Sathyaprakash (2001)

h(t) ∝
(

G mω(t)
c3

)2/3

cos 2φ(t) , (24)

PN-accurate LAL templates require that inspiral is along exact circular
orbits !!



LAL Routines

The LSC Algorithms Library (LAL) employs these inputs to construct various
types of search templates

TaylorT1 Damour, Iyer & Sathyaprakash (2001)

h(t) ∝
(

G mω(t)
c3

)2/3

cos 2φ(t) , (24)

PN-accurate LAL templates require that inspiral is along exact circular
orbits !!

TaylorT1 h(t)

dφ(t)
dt

= ω(t) ;
d ω(t)

dt
= −L(ω)

/
dE
dω

, (25)

To compute TaylorT1 3.5PN h(t), one needs 3.5PN accurate GW luminosity
L(ω) & 3PN orbital energy E



LAL Routines

The LSC Algorithms Library (LAL) employs these inputs to construct various
types of search templates

TaylorT1 Damour, Iyer & Sathyaprakash (2001)

h(t) ∝
(

G mω(t)
c3

)2/3

cos 2φ(t) , (24)

PN-accurate LAL templates require that inspiral is along exact circular
orbits !!

TaylorT4 3.5PN h(t):Very close to NR inspiral h(t), but not in LAL

dφ(t)
dt

≡ ω(t) ; d ω(t)
dt = 96

5

(
G Mω

c3

)5/3
ω2

{
1 +O(ν) +O(ν3/2)

+O(ν2) +O(ν5/2) +O(ν3) +O(ν7/2)

}
, (25)



GW phase evolution: PN Vs NR
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TaylorEt h(t)

The restricted 3.5PN accurate TaylorEt h(t) is given by

h(̂t) ∝ Ẽ (̂t) cos 2φ(̂t)



TaylorEt h(t)

The restricted 3.5PN accurate TaylorEt h(t) is given by

h(̂t) ∝ Ẽ (̂t) cos 2φ(̂t)

dφ

dt̂
= Ẽ3/2

{
1 + Ẽ

[
..

]
+ Ẽ2

[
..

]}
, (26)

d Ẽ
dt̂

= 64
5 η Ẽ5

{
1 + Ẽ

[
..

]
+ ....Ẽ7/2

[
..

]}
,

Ẽ/2 is the dimensionless non-relativistic energy per unit reduced mass

GW driven inspiral is along PN-accurate circular orbit...



Spin effects: a primer
Kidder, PRD,bf 52, 821, 1995; Blanchet, Buonanno & Faye, gr-qc/0605140,
gr-qc/0605139 & recent papers from Jena



Including spin effects:I

• The dominant spin effect is that due to the relativistic spin-orbit coupling
Its contribution to reduced Hamiltonian H = H/µ

HSO ∼
L · S1

c2 r3 = µ
(r × v) · S1

c2 r3 (27)

This is formerly at 1PN order; BUT

S1 ∼ mco rco v spin & for compact objects rco ∼ G mco

c2 →HSO at 2PN
order, if v spin < c. However, if v spin = c, HSO contributions stand at
1.5PN order

• Relativistic spin-orbit coupling provides corrections to ẍ at 2PN/1.5PN
order order along with expressions for Ṡ1, Ṡ2,&L̇

Its contributions to far-zone GW luminosity is also available



Including spin effects:II

• Recently, next to leading order corrections to ẍ , Ṡ1, Ṡ2,&L̇ and
far-zone GW luminosity due to spinning point-particles were obtained

• Black hole absorption occurs at this PN order for the first time ...

• If both compact objects are spinning, spin-spin interactions are
important & its dominant contributions

HSS ∼
S1 · S2 + (n · S1 + n · S1)

c2 r3 (28)

S1 ∼ G mco

c2 → the dominant HSS appear at 2PN/3PN order..

• Explicit contributions to ẍ , Ṡ1, Ṡ2,&L̇ and far-zone GW luminosity due
to spinning point-particles were obtained.

• Next-to-leading order contribution to HSS are conceptually &
computationally difficult to compute .. ongoing efforts ..



Recoil: a primer
Blanchet, Qusailah& Will, astro-ph/0507692 & ....



GW induced recoil:I

• If gravitational radiation field created by a
compact binary is asymmetric, GW
induced recoil occurs

• m1 6= m2&S1 ≡ S2 = 0;

m1 = m2; S1&S2 6= 0

m1&m2 6= 0; S1&S2 6= 0

• Net recoil is due to GW induced damping

• To get lowest order asymmetric radiation
field, we need to beat the mass
quadrupole with mass octupole and
current quadrupole moments.

• Higher order moments→ a tiny effect

X
2

m

2
v

center of mass

v
1

m1

Precoil

Pejected

Figure from Wiseman’s paper
(1992)



GW induced recoil:II
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• Various aspects of GW induced recoil during BBH coalescence based
on EOB approach & for non-spinning BHs

• Maximum recoil during the merger phase

• Recoil estimates based on numerical relativity is consistent with these
observations
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GW induced recoil:IV

• In PN approximation, Linear momentum flux associated with the
anisotropic emission of GWs

F i
P = −G

c7

{
2
63

I(4)
ijk I(3)

jk +
16
45

εijk I(3)
jl J (3)

kl +O(c−2)

}
(29)

Jkl & Iijk are ∝ (1− 4 η)1/2

• To compute the GW induced recoil, one invokes momentum balance
argument

dP i

dt
= −F i

P(t) , → ∆P i (t) = −
∫ t
−∞ dt F i

P(t)

V i = ∆P i/
√

m2 + ∆P2 → V i ∼ ∆P i/m (30)

V i =
464
105

η2 δm
m

x4 ni

For circular inspiral, F i
P is known up to 2PN order ...

• Numerical Relativity recoil estimates follows a similar procedure ..



Symbolic demonstration :
How to get 1PN-accurate
L(y , v)
Text-books by MTW, N. Straumann, Will



Demo:I
• Aim is to solve Rµ ν = Tµ ν − 1

2 gµ ν T ξ
ξ in a perturbative manner & let

χ ∼
(

G m
c2 r

)1/2 ∼ v
c

• We are only interested to χ2 order &→
g0 0 = −1 +(2) g00 +(4) g00 , g0 i =(3) g0i , gij = δij +(2) gij (31)

• From gµ ξgν ξ = δν
µ, we infer

(2)g00 = −(2)g00 ,
(2)gij = −(2)gij ,

(3)g0i =(3) g0i , (32)

• Compute Christoffel symbols & the components of the Ricci tensor

R0 0 =(2) R00 +(4) R00 , R0 i =(3) R0i , Rij =(2) Rij (33)

• It is straightforward to obtain above quantities in terms of (n)gµ ν , their
spatial & time derivatives



Demo:II

• In order to make RHS of (2)R00, (4)R00, (3)R0i , & (2)Rij less complicated,
we apply certain gauge-condition

• This leads to
(2)R00 ∼ △(2)g00 ,

(2)Rij ∼ △(2)gij

(4)R00 ∼
(
△(4)g00,

(2) gij ,
(2) g00,ij , ...

)

(3)R0i ∼
(
△(3)g0i ,

(2) gij,0j , ...

)
(34)

• Apply similar PN ansatz to Sµ ν = Tµ ν − 1
2 gµ ν T ξ

ξ ;

T µ ν & gµ ν have similar PN expansions & this leads to

(0)S00 ∼(2) T 00 , (0)Sij ∼ δ(2)
ij T 00, (2)S00 ∼ (...), (1)S0i ∼ (...)

(35)



Demo:III
•

△(2)g00 ∼(2) T 00 , △(2)gij ∼ δij
(2)T 00 , (36)

(2)g00 ∼ φ , (2)gij ∼ δij φ , φ ∼
∫

d3x ′
(2)T 00(t, x)

|x − x ′| (37)

• Using above expressions, somewhat complicated partial differential
Eqs for (4)g00 and (3)g0i can simplified ..

(4)g00 ∼ φ2 + ψ , △ψ ∼
(

(2)T 00 +(2) T ii
)

(38)

• To solve the Eq for (3)g0i , introduce two more potentials

ξi ∼
∫

d3x ′
(1)T 0i(t, x)

|x − x ′| , χ ∼
∫

d3x ′|x − x ′| (2)T 00(t, x)→△χ = φ

(39)

Finally (3)g0i ∼ ξi + χi0



Demo:IV

• The gauge condition introduced implies that, in general, T α β
;β ≡ 0

However, at this order, the potentials introduced do satisfy the above
relation...

• To get 1PN-accurate Lagrangian, we compute the EOM of a particle in
an external gravitational field, defined by (φ, ψ, χ, ξi )

δ
∫

dt
(

dτ
dt

)
= 0 ,

(
dτ
dt

)2

= −gµ ν
dxµ

dt
dxν

dt

(
dτ
dt

)2

= 1− v2 −(2) g00 −(4) g00 − 2 (3)g0i v i −(2) gij v i v j (40)

• PN-accurate Lagrangian L := 1− dτ
dt & hence expressible in terms of

(φ, ψ, χ, ξi ), their spatial & temporal derivatives..



Demo:IV

• We are interested in point-particles & therefore heuristically introduce

T µν(x, t) =
N

X

A=1

mA
dyµ

A

dt
dyν

A

dt
1

√
−g

dt
dτ

δ(x − yA(t)) , (41)

• This makes the evaluation of potentials fast & easy

For example, χ ∼∑
a ma|x − xa| , & ξi ∼

∑
a

ma v i
a

|x−xa|
...

• The Lagrangian La of a particle a in the gravitational field of other
particles & represented by (φ, ψ, χ, ξi) follows ...

• The total Lagrangian should satisfy Limit ma→0
L

ma
= La → L =

P

a ma La

L =
Gm1m2

2r12
+

m1v2
1

2
+

1

c2

(

−

G2m2
1m2

2r2
12

+
m1v4

1

8

+
Gm1m2

r12

„

−

1

4
(n12v1)(n12v2) +

3

2
v2
1 −

7

4
(v1v2)

«

)

(42)

1←→ 2



Solving PN-accurate orbital
dynamics
Papers from Jena during 2004-2007



PN-accurate solving:I

• Numerical solution of PN-accurate ẍ requires

dx/dt ≡ v; dv/dt ≡ ẍ = A
({

r , ṙ , φ̇
}

x +

{
r , ṙ , φ̇

}
v
)

• Reactive contributions to ẍ is known only to relative 1PN order;
but far-zone fluxes are known to higher PN orders..

• Numerical solution of ẍ need not be PN-accurate & this may lead to
undesirable effects

• If ẍ is employed in an N-Body code, isolating physical effects due to
PN-accurate ẍ for isolated binaries from those due to many-body
effects may become demanding ..

• It is desirable to have a semi-analytic prescription to solve ẍ

It is also required to construct h×,+(t) associated with compact binaries
in inspiralling eccentric orbits..



PN-accurate Solving:II

• Let the relative acceleration of the compact binary be ẍ ≡ A = A0 +A′.

• A0 is the ‘conservative’ (integrable) part & A′ is the reactive
perturbative part.

• The method first constructs the solution to the ‘unperturbed’ system,
whose dynamics is governed by A0.

• The solution to the binary dynamics, governed by A, is obtained
by varying the constants in the generic solutions of the
unperturbed system.



PN-accurate Solving:III

• Recall that for non-spinning compact binaries, conservative part is
available to 3PN order

• For 3PN-accurate dynamics, in the COM frame, there are 4 firs t
integrals.
The 2PN accurate energy and angular momentum of the binary,
denoted by c1 & c i

2:

c1 = E(x1, x2, v1, v2)|2PN CM ,

c i
2 = Ji(x1, x2, v1, v2)|2PN CM ,

• The vectorial structure of c i
2, indicates that the unperturbed motion

takes place in a plane.

• Close inspection of 3.5PN- accurate A → similar picture even
when radiation reaction is present

• We can introduce polar coordinates in the plane of the orbit



PN-accurate Solving:IV

• The functional form for the solution to the unperturbed (3PN
accurate) equations of motion

r = S(l; c1, c2) ; ṙ = n
∂S
∂l

(l; c1, c2) ,

φ = λ+ W (l; c1, c2) ; φ̇ = (1 + k)n + n
∂W
∂l

(l; c1, c2) ,

The basic angles l and λ are given by
l = n(t − t0) + cl , λ = (1 + k)n(t − t0) + cλ

• l, λ & S(l), W (l), ∂W
∂l (l) are periodic in l with a period of 2π.

• The radial period n = 2π/Tr & periastron advance parameter k are
gauge invariant functions of c1 & c2 = |c i

2|.

• t0 is some initial instant and the constants cl & cλ, the
corresponding values for l & λ.



PN-accurate Solving:V

• We construct the solution of the perturbed system, defined b y A
in the following way.

• We keep the same the functional form for r , ṙ , φ & φ̇, as functions of l &
λ, but allow temporal variation in c1 = c1(t) & c2 = c2(t).

• Also, we have following definitions for l & λ

l ≡
∫ t

t0
n dt + cl(t) λ ≡

∫ t
t0
(1 + k) n dt + cλ(t).

• Note evolving quantities cl(t), & cλ(t).

• The four variables {c1, c2, cl , cλ} replace the original four dynamical
variables r , ṙ , φ & φ̇ and {cα} satisfies first order evolution equations.



PN-accurate Solving:VI

• The explicit expressions for {dcα/dt} read
dc1

dt
=

∂c1(x, v)

∂v i A′ i ,

dc2

dt
=

∂c2(x, v)

∂v j A′ j ,

dcl

dt
= −

(
∂S
∂l

)−1{
∂S
∂c1

dc1

dt
+
∂S
∂c2

dc2

dt

}
,

dcλ

dt
= −∂W

∂l
dcl

dt
− ∂W
∂c1

dc1

dt
− ∂W
∂c2

dc2

dt
.

• The evolution of Eqs. for cl & cλ follow from the fact that we have same
functional form for ṙ & φ̇ in unperturbed & perturbed cases.



PN-accurate Solving:VII

• cα(l) = c̄α(l) + c̃α(l); c̄α(l)→ a slow secular drift & c̃α(l)→ periodic
fast oscillations

• It can be demonstrated that to all PN orders dcλ

dt ≡ 0 ≡ dcl
dt

• Therefore, the reactive secular evolution of a PN-accurate eccentric
orbit can be obtained with dc̄1

dt & dc̄2
dt

• While pursuing GW phasing for eccentric binaries, it is advisable to use
ξ ≡ −2 E

(µ c2)
and et as appropriate variables to describe PN-accurate

eccentric orbit

• Idea is to impose ξ(t) and et(t) on 3PN accurate quasi-Keplerian
representation of PN-accurate eccentric orbit that provides explicit
PN-accurate semi-analytic solution to conservative 3PN-accurate ẍ



GQKP:I

• 3PN-accurate conservative orbital dynamics of non-spinning compact
binaries, either in Lagrangian or Hamiltonian approach, allows
‘Keplerian type’ parametric solution:

• Keplerian parametric solution for Newtonian-accurate orbital motion

• r = r (cos ϕ, sin ϕ)
R = a(1− e cos u) ,

φ− φ0 = v ≡ 2 arctan
[(

1 + e
1− e

)1/2

tan
u
2

]
, (43)

l ≡ n(t − t0) = u − e sin u , (44)

The orbital elements a, e, n are orbital energy E , & angular momentum
L



GQKP:II

• For 3PN-accurate orbital motion, the radial motion is also parametrized
by

r = ar (1− er cos u)

• ar , er 3PN accurate semi-major axis & ‘radial eccentricity’.

• These are expressible in terms of orbital energy E , angular momentum
L and m1 & m2.

• u is the eccentric anomaly.



GQKP:III

• However, the 3PN-accurate angular motion is given by

ϕ− ϕ0 = (1 + k) v +

(
f4ϕ

c4 +
f6ϕ

c6

)
sin 2v +

(g4ϕ

c4 +
g6ϕ

c6

)
sin 3v

+
i6ϕ

c6 sin 4v +
h6ϕ

c6 sin 5v ,

where v = 2 arctan
[(

1+eϕ

1−eϕ

)1/2
tan u

2

]
is the true anomaly.

• k measures the advance of the periastron & eϕ is the ‘angular
eccentricity’

• f4ϕ, f6ϕ, g4ϕ, g6ϕ, i6ϕ, and h6ϕ are 2PN & 3PN order orbital functions
expressible in terms of E , L, m1 & m2



GQKP:IV

• The 3PN accurate ‘Kepler equation’ , which connects the eccentric
anomaly to the coordinate time reads

l ≡ n (t − t0) = u − et sin u +
(g4t

c4 +
g6t

c6

)
(v − u)

+

(
f4t

c4 +
f6t

c6

)
sin v +

i6t

c6 sin 2v +
h6t

c6 sin 3v

• l is the mean anomaly, n the mean motion & et the ‘time eccentricity’

• g4t , g6t , f4t , f6t , i6t & h6t are 2PN & 3PN order orbital functions
expressible in terms of E , L, m1 & m2

• The most accurate & efficient way of solving PN-accurate KE is via
adapting Mikkola’s method



How to derive GQKP:I

• Obtain 3PN accurate expressions ṙ & r2 φ̇ in terms of −2 E , J ,m, η

ṙ = n · ∂H
∂p̂ r2 φ̇ =

∣∣∣r × ∂H
∂p̂

∣∣∣

• Let s = 1/r & this leads to ds
dt & dφ

dt being 7th degree polynomial in s

• 3PN-accurate ds
dt admits two positive real roots, s+ & s−

s+ & s− → periastron & apastron

• Factorize these roots from ds
dt & dφ

ds leads to

t − t0 =

∫ s−

s

A0 + A1s̄ + A2s̄2 + A3s̄3 + A4s̄4 + A5s̄5

√
(s− − s̄)(s̄ − s+) s̄2

ds̄ . (45)

φ− φ0 =

∫ s−

s

B0 + B1s̄ + B2s̄2 + B3s̄3 + B4s̄4 + B5s̄5

√
(s− − s̄)(s̄ − s+)

ds̄ , (46)



How to derive GQKP:II

• Expressions for t − t0 & φ− φ0 can be integrated using the ansatz

r = ar (1− er cos u) &ṽ = 2 arctan
[(

1+er
1−er

)1/2
tan u

2

]

• We also introduce eφ = er

[
1 + ...

]
&et = er

[
1 + ...

]
to arrive at

3PN-accurate GQKP

• It follows that

ar =
1
2

s− + s+

s− s+
, er =

s− − s+

s− + s+
. (47)

• The integrals for t − t0 & φ− φ0 when evaluated between the limits s+ &
s− lead to the radial orbital period & the periastron advance rate

These two are gauge-invariant quantities if expressed in terms of E & J .



The ? of chaos

• Numerical solution to PN-accurate spinning compact binary dynamics
is to be pursued carefully

• It was argued by J. Levin & her co-workers that 2PN accurate spinning
compact binary dynamics can be chaotic even when only one of the
object spins

• The 2PN-accurate conservative dynamics only contains the
leading-order spin-orbit interactions

• Therefore, the dimension of phase-space is 8(3 + 3 + 2) & hence
degrees of freedom is 4

There are 4 conserved quantities E , |L|, |S|,L · S

• It should be integrable & hence can not be chaotic !!



GQKP with spins:I

• A parametric solution to PN accurate orbital dynamics that leading
order relativistic spin-orbit interactions exists for two specific
configurations

i) m1 6= m2, S1 6= 0 or S2 6= 0 (Single spin case )

ii) S1 and S2 are arbitrary but m1 = m2.

• For these cases, we have Keplerian type parametrization that describes
not only the precessional motion of the orbit inside the orbital plane, but
also the precessional motions of the orbital plane and the spins
themselves



GQKP with spins:II

eX ,p

eY

eZ

J = JeZ

N

n = r/r

i

j

k = L/L

θ

φ

ϕ

Θ

Υ

Line of sight

Invariable plane

Orbital plane



GQKP with spins:III

•

r(t) = r(t) cosϕ(t) i(t) + r(t) sinϕ(t) j(t) ,

L(t) = Lk(t) ,

S(t) = JeZ − Lk(t) ,

The time evolution of the basic vectors (i , j, k) are given by

i(t) = cos Υ(t)eX + sin Υ(t)eY ,

j(t) = − cosΘ sin Υ(t)eX + cos Θ cosΥ(t)eY + sin Θ eZ ,

k (t) = sin Θ sin Υ(t)eX − sin Θ cos Υ(t)eY + cos Θ eZ

Θ, the precessional angle of L, = S sin α
J

J = (L2 + S2 + 2LS cosα)1/2

α is the angle between L & S.



GQKP with spins:IV

• Time evolution for r , ϕ & Υ are given by

r = ar (1− er cos u) ,

l ≡ n (t − t0) = u − et sin u +
(g4t

c4 +
g6t

c6

)
(v − u)

+

(
f4t

c4 +
f6t

c6

)
sin v +

i6t

c6 sin 2v +
h6t

c6 sin 3v ,

ϕ− ϕ0 = (1 + k)v +

(
f4ϕ

c4 +
f6ϕ

c6

)
sin 2v

+
(g4ϕ

c4 +
g6ϕ

c6

)
sin 3v +

i6ϕ

c6 sin 4v +
h6ϕ

c6 sin 5v ,

Υ−Υ0 =
χsoJ
c2L3 (v + e sin v)

The true anomaly v = 2 arctan
[(

1+eϕ

1−eϕ

)1/2
tan u

2

]
.

The orbital elements & functions are expressible in terms of
E , L,S,m1,m2 & α.



Solving PN-accurate dynamics: Summary

• It is worthwhile to pursue a semi-analytic approach to solve
PN-accurate orbital dynamics to substantiate purely
Numerical results

• It also allows one to specify orbital elements to
PN-accurate order & to make sure that numerical results
are physically justifiable



Effective one-body approach
Ref. T. Damour; http://arxiv.org/abs/0802.4047

h


EOB approach:I

Real two-body problem
(two masses m1, m2 orbiting around each other)

l
Effective one-body problem
(one test particle of mass m0 moving in some background
metric geffective

αβ )
• The mapping is performed with th help of Hamilton-Jacobi formalism

Ŝ = −Ê t̂ + j φ+

∫
dr

√
R(r ; Ê , j), (48)

Demand that Ŝ, j & Ir coincide for the ‘real’ & ‘effective’ descriptions

• Eeffective = f (Ereal); f is determined in the process of matching.



EOB approach:II

• For a test-particle m2 in BH of mass m1

Et = m1 −
p1 · p2

m1
,
Eeff
µ

=
(Et )

2 −m2
1 −m2

2

2m1m2
. (49)

• Solving for Et leads to

Et = m

√

1 + 2
µ

m
Eeff − µ

µ
. (50)

• This manner one develops Himp(r , pr , j)

dr̂

d t̂
=

∂Ĥimp

partialp̂r
,

dφ

dt̂
=
∂Ĥimp

∂ ĵ
≡ ω̂ (51a)

dp̂r

dt̂
= −∂Ĥ

imp

∂ r̂
,

dĵ

d t̂
= Fj (51b)

Fj is the far-zone angular momentum flux & one usually employs Padé approximant version of PN-accurate angular momentum flux for circular

inspiral



Hierarchical triplets
Ref. Ford, Kozinsky & Rasio; 2000



HT in PN approach ?:I

• Discussions about ‘Hierarchical triplets’
appear in dense stellar cluster
simulations

• ‘Hierarchical triplets’, consisting of 3
objects (0,1,2), usually modeled to
consist of an inner (0,1) & an outer
binary (2,3) [ ‘3‘→ stands for the COM of
(1,2) binary]

• If the mutual inclination angle between
the two orbital planes is large enough,
inner binary may experience oscillations
in its eccentricity (Kozai resonances)

It is due to the time averaged tidal force
on the inner binary

m1

m2

m0

Φ

r2

r1



HT in PN approach ?:II

• Periastron advance, appearing at 1PN order, should destroy the Kozai
resonances..

The inclusion of the above effect is done in an ad-hoc manner

• Therefore, evolution of ‘Hierarchical triplets’ using fully 1PN-accurate
3-Body Hamiltonian should be of some interest !

• Is it worth pursuing it ?



HT in PN approach ?:III

• For HT, H ∝ sum of two terms representing the two decoupled motions
and an infinite series representing the coupling of the orbits.

H ∝ m0m1

2a1
+

(m0 + m1)m2

2a2
+

1
a2

∞∑

j=2

(a1/a2)
j
(

r1

a1

)j (a2

r2

)j+1

Pj (cos Φ),

(52)

• It is customary to introduce a set of canonical variables
(l1, l2), (g1, g2), (h1, h2) and their conjugate momenta
(L1, L2), (G1,G2), (H1,H2)
Li ∝ ai

• With the help of a specific canonical transformation, it is possible to
introduce new canonical coordinates & momenta such the the
Hamiltonian is independent of (l1, l2) & hence ai are conserved..



HT in PN approach ?:IV

• The resulting Hamiltonian is available to (a1/a2)
3 order & depends only

on (e1, e2, g1, g2) and i, the mutual inclination angle

• It is straightforward, but tedious, to obtain dynamical equations for
dei/dt and dgi/dt

• To probe the effect of GR, it is customary to add 1PN corrections to
dg1/dt and 2.5PN (Newtonian) radiation reaction contributions to
de1/dt

We need to assume that the inner binary is isolated

• It should be possible to derive dei/dt and dgi/dt at least 1PN order & at
quadrupolar order [ corrections are O((a1/a2)

2) ]

• It is doable with 1PN-accurate 3-Body Hamiltonian derived by G.
Schäfer in 1987 ! & spin effects can be, in principle, added !!



Conclusions

• PN-accurate dynamics involving compact objects should be
useful to the practitioners of N-Body astrophysics,
especially while trying to model realistically scenarios
leading to potential GW sources


