Evolution of the nuclear star cluster

Alessia Gualandris

 Rochester Institute of TechnologyCollaborators: Stefan Harfst, David Merritt, Seppo Mikkola, Hagai Perets

The Galactic center$S M B H M=4 \times 10^{6} M$Stellar cusp $d \leqslant 3 p c$CW stellar disk
scale $0.05-0.5 \mathrm{pc}$, mass $10^{3}-10^{4} \mathrm{M} \odot$, $O B$ stars, age $\sim 5 \mathrm{Myr}$? coW inclined disks-cluster $N \sim 20$ B-type stars 5-50 mp, random orientations

- PGRAPE : parallel direct summation N-body code, 4th order Hermite integrator, predictor-corrector scheme, GRAPE support

Harfst, Gualandris, Merritt,
Portegies Zwart, Berczik (2007)

- AR-CHAIN: algorithmic regularization code with PN terms up to order 2.5
- PGRAPEch: hybrid N-body φ GRAPE + chain regularization

Evolution of the S-stars

19 S-stars
$M_{\text {SMBH }}=4 \times 10^{6} M_{\odot}$ $m_{s-\text { stars }}=10 M_{\odot}$

Simulations performed with AR-CHAIN

Evolution of the S-stars

GR precession - PN terms

$$
\begin{aligned}
T_{P}= & \frac{2 \pi}{3} \frac{c^{2}}{G^{3 / 2}}\left(1-e^{2}\right) \frac{a^{5 / 2}}{M_{\mathrm{BH}}^{3 / 2}} \\
& \simeq 8.2 \times 10^{5} \mathrm{yr}\left(\frac{\mathrm{a}}{10 \mathrm{mpc}}\right)^{5 / 2}\left(\frac{4 \times 10^{6} \mathrm{M}_{\odot}}{\mathrm{M}_{\mathrm{BH}}}\right)^{3 / 2}\left(1-\mathrm{e}^{2}\right)
\end{aligned}
$$

 the stellar cuspHopman \& Alexander (2006) multi-mass model $N=75000 r<0.01 p c$SMBH $M_{S M B H}=3 \times 10^{6} M_{\odot}$MS stars $m=1 M_{\odot}, W D m=0.6 M_{\odot}$, $\mathrm{NS} m=1.4 \mathrm{M} \cdot \mathrm{BH} \mathrm{B}=10 \mathrm{M} \cdot$s-stars: so-2, so-16, so-19, so-20, s0-1 $m=15 M_{\odot}$ Evolution of the S-stars in the stellar cusp

$N=7.5 \times 10^{4}$ stellar cusp

Newtonian precession $\Delta \omega \propto M_{*}(<r) / M_{B H}$ retrograde

Resonant relaxation

Simulations performed with φ GRAPEch Evolution of the S-stars in the stellar cusp

Deviations of the potential from spherical symmetry

$$
\begin{aligned}
& \Delta(i, \Omega) \approx A \frac{m}{M_{\bullet}} N^{1 / 2} \frac{t}{P} \\
& \approx A \frac{m}{2 \pi}\left(\frac{G N}{M_{\bullet} a^{3}}\right)^{1 / 2} t \\
& \text { Rauch \& Tremaine (1996) } \\
& \text { for } A=1 \quad t=10^{4} \mathrm{yr} \\
& \Delta(i, \Omega)=0.5^{\circ} a=10 \mathrm{mpc} \\
& \Delta(i, \Omega)=1^{\circ} a=2 \mathrm{mpc} \\
& 2<A<3
\end{aligned}
$$

Simulations performed with φ GRAPECh

Evolution of S-stars + IMBH
SMBH $M_{S M B H}=4 \times 10^{6} M_{\odot}$19 S-stars $m=10 M_{\odot}$$1 M B H M_{1 M B H}=400,1000$, 2000,4000 M$a=0.3,1,3,10,30 \mathrm{mpc}$12 positions on the sky

$$
e_{I M B H}=0
$$

Evolution of S-stars + IMBH

$M_{-1 M B H}=4000 M_{\odot}$
$a=30 \mathrm{mpc}$
perturbations

Simulations performed with AR-CHAIN

Evolution of S-stars + IMBH

$$
\begin{gathered}
M_{-I M B H}=2000 M_{\odot} \\
a=10 \mathrm{mpc} \\
\text { ejection }
\end{gathered}
$$

Simulations performed with AR-CHAIN

Evolution of S-stars + IMBH

$$
a_{1 M B H}=30 \mathrm{mpc}
$$

$$
a_{1 M B H}=10 \mathrm{mpc}
$$

Simulations performed with AR-CHAIN

$a_{M M B H}=3 \mathrm{mpc}$

Evolution of S-stars + IMBH

$$
h=\left(1-e^{2}\right) \cos ^{2}(j)
$$

Kozai integral

Evolution of S-stars + IMBH
Rate of stellar captures

Origin of the S-stars

- captured during a 3-body encounter stellar binary + SMBH
\Rightarrow high eccentricity
- formed in a gaseous disk and migrated to current location \Rightarrow low eccentricity

Origin of the S-starsIsotropic cusp $N=1200$$N_{1}=1000 N_{2}=200$$m_{1}=3 \mathrm{M}_{\odot} \mathrm{s}$-stars, $m_{2}=10 \mathrm{M} \cdot \mathrm{bhs}$$M_{B H}=3.6 \times 10^{6} \mathrm{M}_{\odot}$Power-Law distribution $r^{-\alpha}, 0.001<r<0.05 p c$ $\alpha=2$ for bbs, $\alpha=1.5$ for s-stars

Eccentricity distribution

high initial eccentricities (e>0.96) binary disruption

Simulations performed with φ GRAPE

Low initial eccentricities ($e<0.3$) disk origin

Perets, Gualandris, Merritt, Alexander (in prep.)

- Stars in the CW disk have significant eccentricities: $e>0.2$ (Paumard et al. 2006), e> 0.4 (Lu et al. 2006)
- Stars in the CCW diske >0.8 (panmard et al. 2006)
- Origin of disk stars: in situ formation from an accretion disk

Evolution of the stellar disksingle stellar disk $M=5000 \mathrm{M} \cdot$

- $N=5000$ equal mass stars
- $N=2500$ stars with salpeter mass functionthin disk $(H / R \sim 0.01)$, all stars $\sim \operatorname{circular}(e \equiv 0.01)$, surface density $\sim r^{2}$$M_{B H}=3.6 \times 10^{6} \mathrm{M}_{\odot}$with/without stellar cusp (1.6×10^{4} black holes $m=10 \mathrm{M} \odot$, r^{2} power-Law distribution between $0.01-0.8 p c$)

Evolution of the stellar disk
 Evolution of the stellar disk

without black hole cusp

with black hole cusp

