Galactic Nuclei

- 1. Phenomenology
- 2. Single-Black-Hole Solutions
- 3. Loss Cones
- 4. Computational Approaches
- 5. Binary Black Holes and Cores
- 6. The "Final Parsec" Problem
- 7. Gravitational Wave Recoil

N-Body Problem: Numerical Methods and Applications Turku, Finland August 2008

Gravitational Waves from Black Holes

Two of the strongest potential sources in the low-frequency (LISA) regime are

- Coalescence of binary supermassive black holes
- Extreme-mass-ratio inspiral into supermassive black holes

Influence radius:

 $r_h = G M_{\bullet}/\sigma^2$ = 11 pc $(M_{\bullet}/10^8 M_{\odot})(\sigma/200 \text{ km s}^{-1})^{-2}$

 M_{\bullet} - σ^2 relation:

 $M_{\bullet} / 10^8 M_{\odot} \approx 1.6 \ (\sigma / 200 \ \text{km s}^{-1})^{\alpha}, \quad 4 \le \alpha \le 5$

Combining the two:

 $r_h \approx 18 \text{ pc} (\sigma/200 \text{ km s}^{-1})^{-2.5}$

|≈ 13 pc $(M_{\bullet}/10^8 M_{\odot})^{-0.55}$

A (roughly) equivalent definition of r_h is the radius containing a mass in stars equal to 2 M_{\bullet} .

Characteristic Times

$$t_D \approx \frac{r}{v} \approx 2\pi \sqrt{\frac{r^3}{GM(< r)}}$$

 $\approx 2 \times 10^5 \text{yr at 3 pc}$

$$\begin{split} t_{\rm coll} &\approx & \left[16\sqrt{\pi}n\sigma r_\star^2 \left(1+\Theta\right)\right]^{-1}, \quad \Theta = \frac{Gm_\star}{2\sigma^2 r_\star} \\ &\approx & 10^{11} {\rm yr \ at \ 1 \ pc} \end{split}$$

Nuclear Relaxation Times

...in a sample of galaxies, measured at the SMBH's influence radius.

Most spheroids* are well fit by **Sersic** profiles:

$$\frac{d\ln\Sigma}{d\ln R} = -\frac{b}{n} \left(\frac{R}{R_e}\right)^{1/n}$$

*Elliptical galaxy, or bulge of spiral galaxy.

Sersic profile:

$d\ln\Sigma$	$b\left(R\right)^{1/n}$
$d\ln R$	$-\frac{1}{n}\left(\frac{1}{R_e}\right)$

Einasto profile:

$$\frac{d\ln\rho}{d\ln r} = -\frac{b}{n} \left(\frac{r}{R_e}\right)^{1/n}$$

An Einasto profile in the space density looks similar to a Sersic profile in the projected density.

Bright* spheroids exhibit mass deficits, or *cores*.

The core radius r_{core} is roughly the SBH influence radius r_{h} .

The core mass M_{def} is ~ the SBH mass M_{\bullet} .

Influence radius: $r_h = G M_{\bullet}/\sigma^2$

*M_V < -21.5

Mass Deficits

Milosavjlevic et al. 2002 Ravindranath et al. 2002

Faint* spheroids exhibit central excesses, or *nuclei*.

The nuclear luminosity is $\sim 10^{-3.5}$ times the total luminosity.

The nucleus is typically unresolved.

$$*M_{v} > -18$$

NGC 205

Modelled with two components: **Galaxy:** Einasto model: $j(r) = j_{gal}e^{-b[(r/r_{1/2})^{1/n}-1]}$

Nucleus: "Hubble" model:

$$j(r) = j_{nuc} \left(1 + r^2 / r_c^2\right)^{-\gamma/2}$$

NB: $(M/L)_{nuc} \approx 0.3 (M/L)_{gal}$

Properties of "Nuclear Star Clusters"

- Present in bulges of all Hubble types
- Frequency of nucleation is 50%-70%:
 - -- Hard to see in bright (high-surface-brightness) galaxies
 - -- Become rare at galaxy luminosities below $M_B \approx -12$
- 10-100 times brighter than globular clusters
- Sizes scale as $R \sim L^{0.5}$ (unlike GCs)
- Spectra reveal extended star formation histories:
 - -- Mean stellar age correlates with Hubble type
 - -- However, the dominant population is always old

Luminosity profiles of the **brightest** galaxies in the HST ACS Virgo cluster study.

Cote et al. (2006)

Milky Way: Nuclear Star Cluster?

2MASS JHK Image

K-Band Light Density (*R. Schödel, unpub.*)

Nuclear Star Clusters: Masses

NSC mass vs. galaxy mass

M_{nuc}/M_{gal} vs. galaxy mass

Seth et al. 2008

"Central Massive Objects"

Ferrarese et al. 2006 Wehner & Harris 2006

Where Did CMOs Come From?

Black Holes

Nuclear Star Clusters

Dynamical Modelling Methods: Comparison

•Fokker-Planck (direct or M.C.)	 + Efficient when modelling systems with high symmetry - Orbit-averaged form is a kludge - Complex to code and slow in the case of asymmetrical systems
•Fluid-Dynamical	 + Relatively efficient + Not restricted to symmetrical systems - Requires closure conditions
•N-Body	 + Exact! + Symmetry of problem irrelevant - Very compute-intensive

Nuclear Core Collapse (no black holes!)

Evolution of the central density, for compact and diffuse nuclei.

(Isotropic, orbit-averaged, Fokker-Planck integration)

Nuclear relaxation times again (black holes are back in...)

Relaxation times in bright galaxies are **very long.**

Bright spheroids: "collisionless" Faint spheroids: "collisional"

Bahcall-Wolf Solution

Two-body encounters lead to a redistribution of stars in energy space:

The most relevant solution is $F_E = 0$ ("zero flux"), which implies, in the potential of the BH:

The exact solution has $F_E \approx 0$; the flux is limited by the rate at which stars diffuse into the black hole.

$$\begin{split} \frac{\partial f}{\partial t} &= -\frac{\partial F_E}{\partial E}, \\ F_E &= -D_E f - D_{EE} \frac{\partial f}{\partial E} \end{split}$$

$$f \approx f_0 |E|^{1/4},$$
$$\rho \approx r^{-7/4}$$

Radius of cusp ~ 0.2 r_h

N-body growth of Bahcall-Wolf cusp.

Preto et al. 2004

In fact, loss of stars into the black hole is dominated by changes in J, not E.

Write this loss term as $F_J(E)$. Then:

$$\frac{\partial f}{\partial t} \approx -\frac{\partial F_E}{\partial E} - F_J(E)$$

 $F_J(E)$ is "large", in the sense that a mass $\sim M_{\rm BH}$ should be scattered into the black hole in a time $\sim T_R$:

 $N \approx M_{BH} / [T_R \ln (r_t / r_h)]$

Stellar Disruption Rates

Wang & Merritt 2004

Tidal Disruptions Observed?

Komossa 2006

In fact, loss of stars into the black hole is dominated by changes in J, not E.

Write this loss term as $F_J(E)$. Then:

$$\frac{\partial f}{\partial t} \approx -\frac{\partial F_E}{\partial E} - \mathbf{F}_J(E)$$

and a steady state requires:

$$F_E \approx -\int F_J dE$$
,

i.e. the loss $\int F_J dE$ into the black hole must be balanced by "downward" diffusion in energy.

Nuclear Expansion due to a Black Hole

Galactic Center Mass Segregation

Density profiles of stars, stellar-mass BHs near the GC SMBH.

Hopman & Alexander 2006

Dynamical Modelling Methods: Comparison

•Fokker-Planck (direct or M.C.)	 + Efficient when modelling systems with symmetry - Orbit-averaged form is a kludge - Complex to code and slow in the case asymmetrical systems 	h high e of
•Fluid-Dynamical	 + Relatively efficient + Not restricted to symmetrical system - Requires closure conditions 	S
•N-Body	 + Exact! + Symmetry of problem irrelevant - Very compute-intensive 	

What Values of *N* are Required?

N fixes the ratio of **relaxation time** to **crossing time**:

Ν	T_{relax}/T_{cross}
10 ²	2.2
10 ³	14.5
104	109
10 ⁵	870
10 ⁶	7250
1 0 ¹¹	3.9x10 ⁸

A physical scaling that depends on the separation of the two time scales, requires large *N*. In loss-cone problems, this requirement is more severe.

Stars are scattered by other stars into the loss cone, where they can interact with the central object(s).

Scattering time is

 $\sim \theta^2 \overline{T_{relax}} < \overline{T_{relax}}$

and separation of the two time scales requires

 $T_{relax} >> \theta^{-2} T_{cross}$

N-body Integration of Binary Black Hole

Decay rate is *not N*-dependent!

Reason: *N* is so small that the binary's loss cone is always full.

Milosavljevic & Merritt 2001

Ν