On the possible formation of IMBHs through runaway merging in dense stellar clusters

J. Van Bever¹ H. Belkus² D. Vanbeveren²

¹Institute of Computational Astrophysics St Mary's University Halifax, Canada

> ²Astrophysical Institute Vrije Universiteit Brussels Belgium

N-body problem: numerical methods and applications

Very Massive Stars
Fast and Stable Evolution Algorithm
Results

3 Youngbody

4 Runaway Merger Results

< ∃ >

э

Very Massive Stars Fast and Stable Evolution Algorithm Results

3 Youngbody

.⊒ . ►

Very Massive Stars Fast and Stable Evolution Algorithm Results

3 Youngbody

Very Massive Stars Fast and Stable Evolution Algorithm Results

3 Youngbody

Young Dense Clusters

Arches

Westerlund 1

Quintuplet

R136 (30 Doradus)

<ロ> <同> <同> < 同> < 同>

ULXs and IMBHs

observed ULX luminosities: assuming compact object as source requires $M \gtrsim 100 M_{\odot}$, i.e. IMBH

Fast and Stable Evolution Algorithm Results

Runaway Merger Formation

```
if t_{cc} < t_{evol} and stellar density
high enough
\downarrow
stellar collisions
\downarrow
possibility of runaway merger of
upto 1000 M_{\odot}
```

Fast and Stable Evolution Algorithm Results

Runaway Merger Formation

if $t_{cc} < t_{evol}$ and stellar density high enough stellar collisions \downarrow possibility of runaway merger of upto 1000 M_{\odot}

< □ > < 同 >

Fast and Stable Evolution Algorithm Results

Runaway Merger Formation

if $t_{cc} < t_{evol}$ and stellar density high enough \downarrow stellar collisions \downarrow possibility of runaway merger of upto 1000 M_{\odot}

However, very massive stars have huge stellar winds

< □ > < 同 >

Fast and Stable Evolution Algorithm Results

Source Data for Evolution

Similarity theory of stellar structure (Nadyozhin & Razinkova 2005): *Assumptions:*

- Chemically homogeneous stars
- Thomson scattering only

Output:

Luminosity	$L = L(\mu^2 M)$	$\mu~=~$ molecular
Radius	$R = R(\mu^2 M)$	weight of gas
Convective core mass	$M_{cc} = M_{cc}(\mu^2 M)$	

 \longrightarrow results for $\mu^2 M \leq$ 4000 M_{\odot}

Fast and Stable Evolution Algorithm Results

Integration Technique

Evolution of central abundances:

• Core Hydrogen burning

$$M_{cc}\frac{dX}{dt} = -\frac{L}{\epsilon_H}$$

• Core Helium burning:

$$\begin{split} M_{cc}\left(\frac{B_{Y}}{A_{Y}}\frac{dY}{dt} + \frac{B_{C}}{A_{C}}\frac{dC}{dt} + \frac{B_{O}}{A_{O}}\frac{dO}{dt}\right) &= -L \\ + \text{ relations } C &= C(Y) \text{ and } O &= O(Y) \quad \text{(Langer 1989a, b)} \end{split}$$

Evolution of stellar mass:

$$\frac{dM}{dt} = any \dot{M}(M, L, X, Y, \ldots)$$
 formalism

Fast and Stable Evolution Algorithm Results

Used Mass Loss Rate Formalisms Core Hydrogen Burning

Theor. predicted line driven wind rates for very massive O-type stars (Kudritzki 2002)

 $\longrightarrow \dot{M} = \dot{M}(L, T_{\text{eff}}, Z)$ through interpolation formulae

See Yungelson et al. (2007) for different formalism.

J. Van Bever, H. Belkus, D. Vanbeveren IMBHs in dense stellar clusters

Fast and Stable Evolution Algorithm Results

< A >

(*) *) *) *)

Used Mass Loss Rate Formalisms Core Helium Burning

Our preferred formalism:

$$\log \dot{M} = \log L - 10 + 0.5 \log \left(\frac{Z}{Z_{\odot}} \right)$$
 (Vanbeveren 1998)

Note: produces very similar results compared to rates of Nugis & Lamers (2000)

Fast and Stable Evolution Algorithm Results

Mass Evolution

Fast and Stable Evolution Algorithm Results

Final Masses

Note: role of eruptive mass loss through LBV-type events? (Smith & Owocki 2006)

- direct N-body code
- modular OO design (C++)
- population & spectral synthesis module for massive stars: contains Brussels library of binary evolutionary tracks: note: consistent evol. tracks of accretion stars
- (MPI parallellisation for Beowulf type clusters)

A 3 b

Single stars and center of masses of complex hierarchies: 4th order Hermite integrator with blockstep scheme.

Close encounters:

- two-body encounters: KS regularization with Stumpff functions (Mikkola & Aarseth 1998)
- multi-body encounters: chain regularization (Mikkola & Aarseth 1990, 1993)

Mass Evolution of Runaway Merger

Model:

- 3000 massive stars only (*M* > 10 *M*_☉)
- $R_{hm} = 0.5 \ pc$
- King W = 9 density profile
- no prim. binaries

- Very massive stars tend toward very similar final masses if $\frac{d \log \dot{M}}{d \log L}$ is large enough.
- Formation of IMBHs at solar Z through runaway merging is unlikely, but feasible at low Z.