Solution (ca. 2004): The GRAPE Cluster

mini-GRAPEs
(GRAPE-6A)

Solution (ca. 2008): The GPU Cluster

GPUs
(NVIDIA)

Parallel Algorithms

- Spread the N particles evenly among p processors
- Shift particles cyclically; compute and store partial forces ("systolic" algorithm)
- Repeat p times
- Collect and sum forces

Dorband, Hemsendorf \& Merritt 2003
Makino 2003
Harfst et al. 2007

Performance of " ϕ GRAPE"

(Harfst et al. 2007)

Schemes for "regularizing" close interactions with a BH (or BHs):

- Kustaanheimo-Stiefel (KS) regularization

Coordinate transformation that effectively converts the Kepler problem to the simple harmonic oscillator. Often combined with a chain routine for multiple particles.

- Wheel-spoke regularization (WS)

An alternative to the chain when there is a single dominant body. Treats every interaction with the BH via KS regularization while other interactions use a small softening.

- Algorithmic regularization (AR)

Removes singularities with a time transformation. Two versions:
-- Logarithmic Hamiltonian (LogH)
-- Time-transformed leapfrog (TTL)

Bringing Them Together

Galaxies merge

Binary forms

Binary decays (?), via:
-- ejection of stars
-- interaction with gas
$\mathrm{t}=2.6 \mathrm{Gyr}$

Edge-On

Theory/Computation Challenges for LISA

 (T. Prince, Dec. 14, 2003, CGWA)[As identified by the LISA International Science Team - March, 2002]

1) Understanding the formation and evolution of nuclear star clusters around supermassive black holes
2) Prediction of waveforms of compact objects spiraling into supermassive black holes
3) Development of methods for separating thousands of simultaneous wavetrains of diverse sources from a single time series
4) Understanding the fate of merging supermassive black holes (the "final parsec problem")
5) Computing the emission from merging black holes
6) Predicting the stochastic primoridial background spectra due to inflation, phase transitions, brane worlds and other sources involving new physics
7) Understanding the astrophysics of tides and mass transfer in whitedwarf binaries

In Dyson's "gravity machine" an object is fired toward twin stars so that it circles the approaching star and is thrown back by that star's gravity, having gained much additional energy.

"Grouitational Slingshot"

In-Spiralling Black Holes

$$
\begin{aligned}
r_{h} & \approx \frac{G M_{12}}{\sigma^{2}} \\
& \approx 1.54 \mathrm{pc}\left(\frac{M_{12}}{3.5 \times 10^{6} M_{\text {sun }}}\right)\left(\frac{\sigma}{100 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{-2}
\end{aligned}
$$

In-Spiralling Black Holes

$$
\begin{aligned}
a_{h} & \approx \frac{G M_{2}}{4 \sigma^{2}} \\
& \left.\approx 0.39 \mathrm{p} q \frac{M_{12}}{3.5 \times 10^{6} M_{\text {sun }}}\right)\left(\frac{\sigma}{100 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{-2}
\end{aligned}
$$

$$
q \equiv M_{2} / M_{1}
$$

At the "hard binary" separation, the binary efficiently kicks out all stars on loss-cone orbits.

This requires a smaller separation for less-massive black holes.

Subsequent evolution (I.e. shrinking) requires new stars to be scattered onto these orbits.

Binary SMBH forms by displacing stars.

Energy released in

 reaching the "hard binary" separation, $a \approx a_{h}$, is:$$
\begin{aligned}
\Delta E & \approx-\frac{G M_{1} M_{2}}{2 r_{h}}+\frac{G M_{1} M_{2}}{2 a_{h}} \\
& \approx-\frac{1}{2} M_{2} \sigma^{2}+2 M_{12} \sigma^{2} \\
& \approx 2 M_{12} \sigma^{2}
\end{aligned}
$$

almost independent of the binary mass ratio
 M_{1} / M_{2}.

Mass Deficits

Milosavjlevic et al. 2002
Ravindranath et al. 2002

A Bona-Fide Binary Black Hole?

The observed (projected) separation of $\sim 7 \mathrm{pc}$ is the expected stalling radius for a $\sim 10^{9} M_{\text {sun }}$ binary SMBH.

Rodriguez et al. 2006

Light Curve

OJ 287

Valtonen et al. 2006, 2008

Precessing Orbit Model

Overcoming the "Final-Parsec Problem"

I.e. how to bring binary separations from ~ 1 pc down to ~0.001 pc

1. Allow the BH s to interact with gas
2. Prolong BH-star interactions, by...
-- Collisionless loss-cone refilling
-- Collisional loss-cone refilling
3. Add additional BHs

Overcoming the "Final-Parsec Problem"

I.e. how to bring binary separations from ~ 1 pc down to ~0.001 pc

1. Allow the BHs to interact with gas
2. Prolong BH-star interactions, by...
-- Collisionless loss-cone refilling
-- Collisional loss-cone refilling
3. Add additional BHs

Loss-cone around a binary black hole.

star
binary black hole

Stars are scattered into the binary, and ejected via the gravitational slingshot. The binary responds by shrinking.

The shrinking rate (d/dt)(1/a) is limited by the rate of diffusion of stars into the loss cone.

$$
\therefore \frac{d}{d t}\left(\frac{1}{a}\right) \propto T_{r}^{-1} \propto N^{-1}
$$

Nuclear Relaxation Times

Stalling of the massive binary can be avoided if the nuclear relaxation time is shorter than ~a Hubble time.

This requires:
$\sigma \leqq 100 \mathrm{~km} \mathrm{~s}^{-1}$

N-Dependence of Binary Evolution

N-Dependence of Binary Evolution

$s \equiv \frac{d}{d t}\left(\frac{1}{a}\right)$

* N-body
- Fokker-Planck

O F.-P.+ "secondary slingshot"

Fokker-Planck!

Overcoming the "Final-Parsec Problem"

I.e. how to bring binary separations from ~ 1 pc down to ~0.001 pc

1. Allow the BHs to interact with gas
2. Prolong BH -star interactions, by...
-- Collisionless loss-cone refilling
-- Collisional loss-cone refilling
3. Add additional BHs

"Chaotic" (collisionless) Loss Cones

Box (chaotic) orbit

Holley-Bockelmann \& Sigurdsson 2006
Merritt \& Valluri 1999
Gerhard \& Binney 1985
Norman \& Silk 1983

Distribution of pericenters

d

Implies feeding rate of

$$
\mathrm{d} M / \mathrm{d} t \approx f_{b o x} \mathrm{O}^{3} / G
$$

into a binary SMBH.

Initial conditions:
Rotating King model

Berczik et al. 2006

Hardening rates vs. N.
No N -dependence for triaxial models.

Evolution of semimajor axis

Eccentricity distribution at time of binary formation

Binary evolution (including terms up to PN2.5)

\square Binary at the Galactic Center?

Evolution of the separation, for three values of $\mathrm{M}_{\mathrm{IMBH}}$.

Stalling radii are $\sim 10^{-3} \mathrm{pc}$.

Constraints on IMBH at Galactic Center

Hansen \& Milosavljevic 2003

Yu \& Tremaine 2003

\square Kicking Them Out

Redmount \& Rees (1989):

"...recoil speeds hundreds of times larger [than in the non-spinning case], hence larger than galactic escape velocities, might be obtained from the coalescence of rapidly rotating holes...This effect....might be largest for two holes of equal mass"

2005: Year of the Breakthrough(s)

Generalized Harmonics

Pretorius, PRL, 95, 121101 (2005)
Followed by Caltech/Cornell/AEI
Moving Punctures
Campanelli et al., PRL, 96, 111101 (2006)
Baker et al., PRL, 96, 111102 (2006)
Followed by PSU/Jena/FAU/AEI/LSU/...

Rocket Effect (no spins)

Kick maximized for:
$\eta \approx 0.195$, i. e.
$M_{2} / M_{1} \approx 0.36$

Gonzalez et al. (2006)

Baker et al. 2006
Sopuerta, Yunes \& Laguna 2006 Herrmann, Shoemaker \& Laguna 2006

Galaxy Escape Velocities

Rocket Effect (non-zero spins)

Koppitz et al. (2007):

$$
\begin{aligned}
& m_{1}=m_{2} a_{1}=0.58 \quad a_{2} / a_{1}=-(0,1 / 4,1 / 2,3 / 4,1) \\
& V=128 \mathrm{~km} \mathrm{~s}^{-1}\left(1-a_{2} / a_{1}\right)
\end{aligned} \leq 256 \mathrm{~km} \mathrm{~s}^{-1} .
$$

Herrmann et al. (2007):

$$
\begin{aligned}
& m_{1}=m_{2} a_{1}=-a_{2}=(0 \cdot 2,0 \cdot 4,0 \cdot 6,0 \cdot 8) \quad \leq 392 \mathrm{~km} \mathrm{~s}^{-1} \\
& V=475 \mathrm{am} \mathrm{~s}^{-1}
\end{aligned}
$$

Campanelli et al. (2007):

$$
\begin{array}{ll}
m_{1}=2 m_{2} a_{1}=0.89 a_{2}=0 & \mathrm{~V}=454 \mathrm{~km} \mathrm{~s}^{-1} \\
m_{1}=m_{2} a_{1}=-a_{2}=0.5 & \mathrm{~V}=1830 \mathrm{~km} \mathrm{~s}^{-1}
\end{array}
$$

Gonzalez et al. (2007):

$$
m_{1}=m_{2} a_{1}=-a_{2}=(0.73,0.80) \quad \mathrm{V}=2500 \mathrm{~km} \mathrm{~s}^{-1}
$$

Tichy \& Marronetti (2007):

$$
m_{1}=m_{2} a_{1}=a_{2}=0.80 \quad \leq 2500 \mathrm{~km} \mathrm{~s}^{-1}
$$

Baker et al. (2007):

$$
m_{1} / m_{2}=2 / 3 \quad a_{1}=a_{2}=(0, \pm 0.2) \quad \leq 392 \mathrm{~km} \mathrm{~s}^{-1}
$$

Rocket Effect

```
max. recoil when:
\(M_{1}=M_{2}\),
\(a_{1}=-a_{2}=1\),
a parallel to orbital plane
```


Mass ratios as extreme as 5:1 can result in
$V_{\text {kick }}>1000 \mathbf{~ k m ~ s}^{-1}$.

$$
\begin{aligned}
& V_{z} \approx 6 \times 10^{4} \mathrm{~km} \mathrm{~s}^{-1} \frac{q^{2}}{(1+q)^{4}} \\
& \left(q \equiv M_{2} / M_{1}\right)
\end{aligned}
$$

Recoil: Dependence on Orbital Phase

CLZM (2007):
Kick depends on initial orientation of BH spin wrt initial velocity vector.
$V_{z}=1875 \mathrm{~km} \mathrm{~s}^{-1} \cos \left(\vartheta-\vartheta_{0}\right)$
$\Rightarrow 4000 \mathrm{~km} \mathrm{~s}^{-1}$ for $a_{1}=a_{2}=1$!

Kicks of $\sim 4000 \mathrm{~km} / \mathrm{s}$ are large enough to eject SMBHs even from the brightest galaxies!
Even $\sim 400 \mathrm{~km} / \mathrm{s}$ can substantially displace the BH from the center.

Volonteri 2007

Schnittman \& Buonanno 2007
Bogdonavich et al. 2007

Kicked SMBH
$\mathrm{V}_{\text {kick }} \approx(1 / 2) \mathrm{V}_{\text {escape }}$

Gualandris \& DM 2008

Early evolution of kicked BHs, for two values of $V_{\text {kick }}$ (0.7, $0.8 \times V_{\text {esc }}$).

Curves show trajectories predicted by Chandrasekhar's formula, for $\ln \Lambda=$ (1,2,3,4).

Full evolution of BH trajectories, after kicks of various sizes.
"Phase II" is indicated with solid lines.
"Phase III" (Brownian regime) is indicated with dashed lines.

Mass deficits produced by kicked SMBHs.

$$
M_{\text {def }} \approx 5 M .\left(V_{k i c k} / V_{e s c}\right)^{1.75}
$$

Mass Deficits

Milosavjlevic et al. 2002
Ravindranath et al. 2002

Observing Recoiling SMBHs

- Offset QSO
(Kapoor 1976; Madau \& Qataert 2004; Loeb 2007)
- Interrupted accretion
(Liu et al. 2003; Milosavljevic \& Phinney 2005)
- UV / IR / X-ray flares
(Lippai et al. 2008; Shields \& Bonning 2008; Schnittman \& Krolik 2008)
- Features in the hot gas
(Devecchi et al. 2008)

All of these require the presence of gas

Stars Bound to a Recoiling SMBH

Stars initially within a radius:

$$
r_{\text {kick }}=G M . / V_{\text {kick }}{ }^{2}
$$

remain bound to the BH after the kick.

Stars Bound to a Recoiling SMBH

Stars initially within a radius:

$$
r_{\text {kick }}=G M . / V_{\text {kick }}{ }^{2}
$$

remain bound to the BH after the kick.

The total bound mass is:

$$
\begin{aligned}
M_{\text {bound }} & \approx \rho\left(r_{\text {kick }}\right) r_{\text {kick }}^{3} \\
& \propto V_{\text {kick }}^{2(\gamma-3)} \quad\left(\rho \propto r^{-\gamma}\right)
\end{aligned}
$$

and is of order $1 \% M$. for $V_{\text {kick }}=10^{3} \mathrm{~km} \mathrm{~s}^{-1}$.

Recoil Flares?

A recoiling SMBH disrupts both bound, and unbound, stars.

Disruption rates are only moderately lower than those of nuclear SMBHs.

END

