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• Binary black hole coalescence is of great 
interest wrt. gravitational waves, merger 
history...

• Stellar dynamical simulations can help to:

• Understand the contribution of 
relaxation & centrophilic orbits 

• Investigate the Core formation

Objectives



Recipe for triaxiality
1. Take a spherical Dehnen γ=1 model with 

Mbh=0.01 Mtot

2. Distort density and velocity tensor 

3. Let the model “relax” for t≈10tD using SCF1

Have a self consistent 
triaxial black hole 
model

Don’t know exactly 
what you get

stability is not 
guaranteed

ConPro

1Lars Hernquist and Jeremiah P. Ostriker, 1992
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Integration of all 100K orbits in a fixed 
potential (each for 1000 periods)
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Oblate model

Chaos classification by 
spectral dynamics
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Prolate model
Integration of all 100K orbits in a fixed 

potential (each for 1000 periods)

Chaos classification by 
spectral dynamics



Thin orbits

• Do all Box orbits 
become chaotic?

• in 3D, resonant orbits 
are thin

• Thin orbits avoid the 
center, thus can stay in 
place

• How significant is this in 
nature?

Merritt & Valluri, 1999
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Examples of thin orbits from each of these six families are
shown in Figures 4 and 5. Figure 4 plots intersections of the
orbits with the three principal planes ; because these orbits
are thin, their intersection with any plane deÐnes a curve or
set of curves, rather than a Ðnite area as in the case of a
volume-Ðlling orbit. None of the orbits passes precisely
through the center, although all of them come quite close.
Figure 5 presents views of the surfaces deÐned by the orbits.
These plots were generated using LaskarÏs algorithm to
extract the frequency spectra, equation (7), followed by
equation (8), which yields the Cartesian coordinates in
terms of the two reduced angle variables (h(1), h(2)). The
resulting (numerical) functions x(h(1), h(2)) deÐne a surface

that was plotted via the Mathematica routine
““ ParametricPlot3D.ÏÏ

When projected against the principal planes, the thinness
of these orbits is not readily apparent, and it is likely that
thin box orbits were seen but not identiÐed as such in many
earlier studies. A possible example is shown in Figure 6 of
Levison & Richstone (1987).

While there are initial conditions in Figure 3a that gener-
ate closed orbitsÈorbits restricted to a single curve in con-
Ðguration spaceÈthe majority of regular orbits are
identiÐable only with a singly degenerate resonance zone.
Further evidence for this interpretation is provided by
Figure 6, which shows the frequency spectra of two orbits,

FIG. 4.ÈIntersections with the principal planes of Ðve thin box orbits from the potential of Fig. 3a. Because the orbits are thin, their intersections with any
plane deÐne a curve or set of curves. Each of these orbits is stable and avoids the center, whose position is indicated with a plus sign.
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FIG. 5.ÈSurfaces Ðlled by the thin box orbits whose cross sections are shown in Fig. 4, as seen from vantage points on each of the three principal axes

computed by Fourier analysis of the z-component of the
motion. The Ðrst orbit is from the regular region that lies at
the intersection of the (2, 1, [2) and (4, [2, [1) resonance
zones in Figure 3a. The intersection of these zones deÐnes a
regular region of degeneracy 2, associated with the closed,
5 :6 :8 orbit at its center. The second orbit is from the
(2, 1, [2) resonance zone ; this orbit is not obviously
identiÐed with any closed orbit.

Many of the lines in the spectrum of the Ðrst orbit, Fig-
ure 6a, lie precisely at integer multiples of a single base
frequency, with This fre-u

k
\ n

k
u0(1), u0(1) \ 0.05997853.

quency is close to the (single) frequency of the 5 :6 :8 period-
ic orbit whose starting point lies nearby on the
equipotential surface. In addition, the spectrum of Figure 6a
contains pairs of lines that are o†set symmetrically from the
primary lines, at frequencies of andu

k
^ u0(2) u

k
^ u0(3),

where and These twou0(2) \ 0.012007 u0(3) \ 0.016179.
additional frequencies may be interpreted as resulting from
the slow libration, in two independent directions, of the
orbit around the parent closed orbit (Binney & Spergel
1982 motivate this interpretation in the context of a two-
dimensional orbit). The spectrum of the orbit in Figure 6a is

Thin box orbits in a Dehnen potentialThin box orbit in a the prolate model



spherical

oblate prolate

Binary black hole 
hardening in the 

aforementioned models

Mbh1+Mbh2 = 0.01 Mtot;    Mbh1=10 Mbh2

Circular orbit at 1% rlagrange
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see also: Berczik et al. 2006

Direct Nbody realisation



prolate

spherical

Density profiles 
at t=0, 1/a=6250

oblate

rh

rh

Carving of a Core I
spherical density plots

: last star
: influence radius



• Which is which?

• What happens inside?

• Only slight if any difference in the Core - could be “projection” effect

Carving of a Core II
t≈1trx(rh)



• Centrophilic orbit dominated models 
circumvent the scaling problem

• Orbit analysis will be used to model the 
contribution of centrophilic orbits (Merrit 
& Poon, 2004)

• Significance of thin orbits?

• Evidence for lack of core in triax. models is 
not yet conclusive

Conclusions and Outlook



Thank you!


