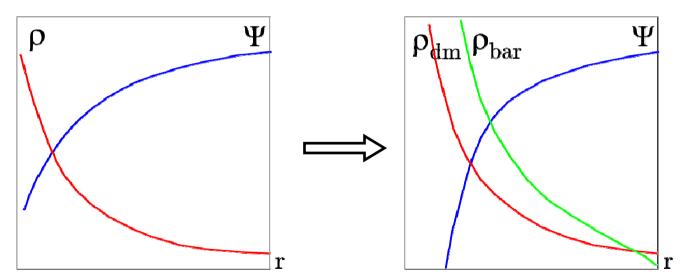
Dark matter dynamics in Galactic center

Eugene Vasiliev and Maxim Zelnikov Lebedev Physical Institute, Moscow

Why the dark matter life and adventures in Galactic center are interesting?

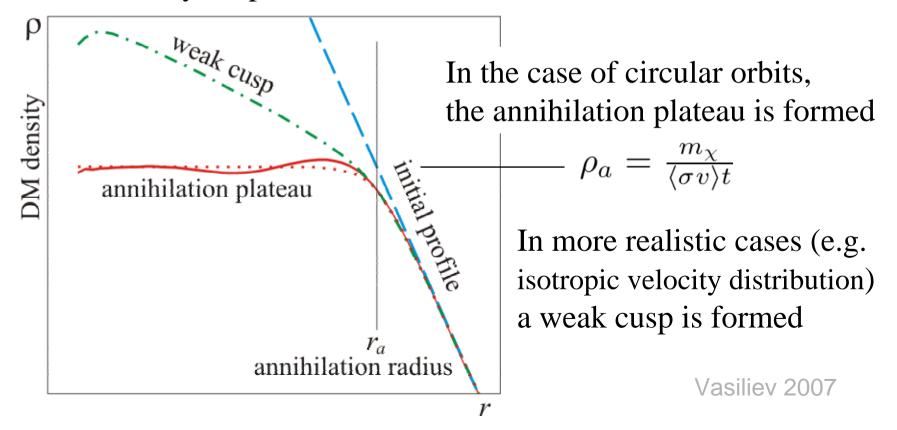

- There is much DM in the center: $\rho(r) \sim r^{-1}$ originally or even steeper after baryonic compression
- High density implies high annihilation rate: $J \sim \int \rho^2(r) d^3r$
- The distribution of DM changes greatly during galactic lifetime because of gravitational interaction with stars
- The supermassive black hole in galactic center is nourished by DM as well as by ordinary matter

What processes are significant for dark matter evolution in Galactic center?

Baryonic compression

For circular orbits the angular momentum is conserved:

$$L^2 = v_{circ}^2 r^2 = M_{dm,in}(r) r \Rightarrow (M_{dm,fin}(r') + M_{bar}(r')) r'$$



In general case, the radial action is also adiabatically conserved.

Blumenthal et al. 1986; Gondolo & Silk 1999; Sellwood & McGaugh 2005; Vasiliev 2006

What processes are significant for dark matter evolution in Galactic center?

Dark matter annihilation near a black hole
 DM density drops at small radii

What processes are significant for dark matter evolution in Galactic center?

Dark matter scattering by stars and absorption by SMBH

Merritt, Harfst & Bertone 2007

Assumptions:

- spherical symmetry: using variables E (energy) and L (angular momentum)
- single supermassive black hole in the galactic center
- orbit-averaged kinetic equation (distribution function changes slowly compared to dynamical time)
- Stationary stellar distribution

Additionally

evolution considered both within and outside SMBH radius of influence (r_h = 2 pc for Milky Way);

relaxation timescale $t_{\rm r}$ ~ 2.5 Gyr within $r_{\rm h}$ and quickly grows outside $r_{\rm h}$

The kinetic equation:

$$\frac{\partial f(E,R,t)}{\partial t} = \mathcal{G}^{-1} \frac{\partial}{\partial \xi_{\alpha}} \left\{ \mathcal{G} \left[D_{\alpha\beta} \frac{\partial f}{\partial \xi_{\beta}} - D_{\alpha} f \right] \right\} - S_{ann}[f], \qquad \mathcal{G} - \text{jacobian},$$

 $\xi_{\alpha} = \{E, R\}$ are phase space variables: E is energy and $R = \frac{L^2}{L_c(E)^2} \in [0..1]$ is scaled angular momentum squared ($L_c(E)$ is maximal angular momentum for given energy E).

 D_{α} и $D_{\alpha\beta}$ are drift and diffusion coefficients due to scattering on stars.

 $D_{\alpha} \propto \frac{m}{m_{\star}} \Rightarrow \text{drift is insignificant for dark matter.}$

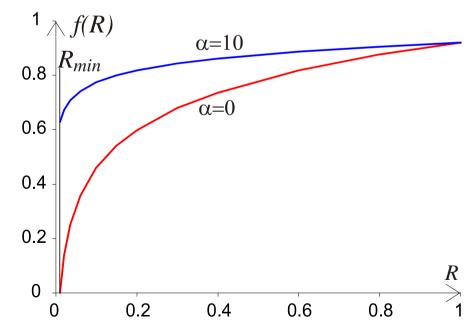
 S_{ann} is orbit-averaged annihilation loss term.

The black hole imposes boundary condition at $R=R_{min}(E)$:

$$\left. \left(f - \alpha R_{min} \frac{\partial f}{\partial R} \right) \right|_{R=R_{min}} = 0.$$

$$\alpha \approx \begin{cases} \sqrt{q} &, q < 1; \\ q &, q > 1; \end{cases}$$

$$q = (D_{RR}/R)|_{R \to 0} T_{orb}(E)/R_{min}(E)$$

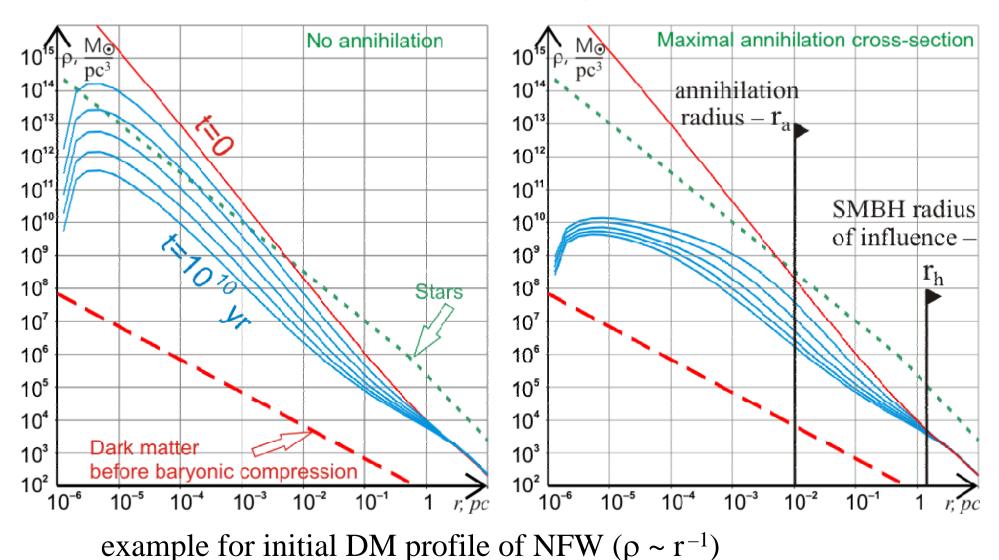

Low $E: q \ll 1$ (empty loss cone)

High $E: q \gg 1$ (full loss cone)

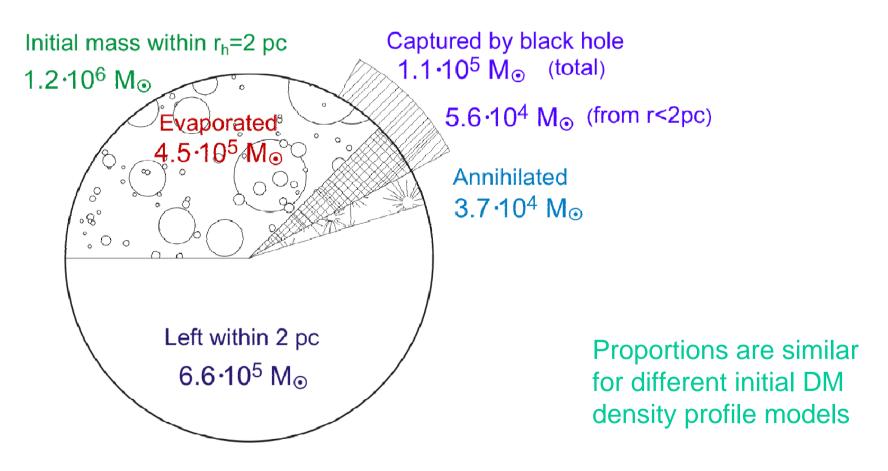
The distribution function at fixed E and small R is close to logarithm:

$$f(R) = f_{min} \cdot \left(1 + \frac{1}{\alpha} \ln \frac{R}{R_{min}}\right).$$

(capture boundary)


For stars this allows to reduce the equation to 1-dimensional (for energy only)

Main features of our consideration:


- two-dimensional (E and R):
 diffusion coefficients vary significantly with R, so R-averaging and
 reduction to one-dimensional equation for energy is questionable
- broad class of initial DM profiles (NFW, Moore, etc.) allows comparison of different models and detects common factors
- analytic approximations for early (t«t_r) and late (t»t_r) times; analytic consideration of 1-dim. simplified equations for E and R; full 2-dim. equation is solved numerically.

Main difference from stars: no (quasi)-stationary DM profile (as opposed to Bahcall-Wolf cusp) because of constant heating of DM particles by stars [energy equipartition of light (DM) and heavy (star) species]

Dark matter density evolution

Dark matter budget after 10¹⁰ yr of evolution

example for initial DM profile of NFW ($\rho \sim r^{-1}$)

Conclusions

- Dark matter distribution in the Galactic center significantly evolved since Galaxy formation; the evolution is due to gravitational scattering on stars, capture by black hole and annihilation
- Evolution is followed by method of Fokker-Planck equation in two-dimensional phase space of energy and angular momentum
- Differences between various initial DM density profiles are greatly reduced after several relaxation times
- DM density determines intensity of annihilation radiation from the Galactic center; predictions from the calculations are consistent with observational constraints