
Background: Algorithms

Algorithm is a detailed set of instructions.
Natural languages are rather vague.
To describe an algorithm unambiguously a formal language with precisely defined interp-
retation must be used.

To solve a problem, express the solution as a very detailed algorithm that can then be
converted to a program written in some programming language.

A compiler (another program) will convert the source code to object code understood
by the computer.

Usually some libraries must be linked to the object code to create an executable prog-
ram.



Example 1: Find the largest element in a set of numbers.

This instruction is sufficient for humans, but does not specify what to do:
- what are the numbers?
- how the largest number is found?
- how the result is used?

A mathematical version:
x = max{a1, a2, . . . , an}

Even this does not tell how the largest value is found.



Algorithmic version:

x = a1,

if a2 > x, x = a2,

if a3 > x, x = a3,

...

if an > x, x = an.

This can be programmed if n is nown.

But n can have different values.



A better algorithm:

n = 100

x = a1,

i = 2, 3, . . . n :

ifai > x, x = ai



The example contains three basic control structures:

1) Sequential execution: First, the number of elements is set as 100,
next, the value of the first number is assigned to x,
finally, the largest element is searched.

2) Choice: If the current element is bigger than the largest element found this far, rep-
lace the largest element by the new value.

3) Iteration: Repeat the comparison for all numbers of the set.

This could be written as a program

n = 100
x = a(1)
do i=2,n
if (a(i) > x) x = a(i)

end do



This is not yet a complete program.
– Were are the values ai coming from?
– How the result is used?



Example 2: Sieve of Eratosthenes

A simple method for finding primes.

1. Write down numbers 2, 3, 4, . . . , n.

2. Remove the multiples of 2 (4, 6, 8 jne.).

3. The next element in the list is a prime

4. remove numbers that are multiples of the number found in the rpevious step.

5. If the next remaining number is <
√
n, return to step 3.

6. All remaining numbers are primes.

This is already pretty detailed, but step 2 contains iteration that needs some tuning befo-
re it can be programmed.


