
Fortran 90/95/...

+ good for numerical problems

+ optimising compilers ⇒ efficient code

+ many mathematical functions already included

+ complex arithmetic

+ array operations

+ operators expandable to own data types

+ standardised ⇒ portability

+ good subroutine libraries available (NaG etc.)

+ compilers accept also old programs, which are abundant

- most of the old programs just horrible

- neolithic potholes requiring careful coding

Example:

Source code in a file addition.f90:

program addition
real x,y,z
write(*,*) ’give two numbers’
read (*,*) x,y
z=x+y
write(*,*) ’sum is’,z
end program addition

Compilation and execution might be:

>lf95 -o add addition.f90
Compiling file addition.f90.
Compiling program unit addition at line 1:
>
>add
give two numbers
1,3
sum is 4.00000000

Example: A simple equation solver

Write the equation as x = f(x). For example, x5
− x− 1 = 0 ⇒

x = x5
− 1

or
x = (1 + x)0.2

program solve
! find the real root
! the equation x**5-x-1=0
real x0, x1
x0 = 0.5 ! guess initial value
x1=(1.0+x0)**0.2
! iterate until the values do not change
do while (x1.ne.x0)
x0 = x1
x1 = (1.0+x0)**0.2

end do
write (6, *) x1, x1**5-x1-1
end

>lf95 -o solve solve.f90
Compiling file solve.f90.
Compiling program unit solve at line 1:
>./solve
1.16730404 5.03132583E-07

Program format

Fixed and free form; cannot be mixed. In F77 fixed form only. In the following only the
free form will be discussed.

Lower- and uppercase letters are considered the same (except possibly in file names de-
pending on the operating system). However, use lower- and uppercase letters in a con-
sistent way and write the same name always in the same way to keep the code readable.
Abundant use of uppercase letters often makes text difficult to read.

A statement ends at the end of line; no separators are needed.

If a statement continues to several lines, it has to be shown explicitly. An &-sign at the
end of line means that the statement will continue on the next line:

y = 1.0 + x + 0.5 * x**3 &
+ 1.0/6 * x**4

Maximum length of a statement is 40 lines.

An exclamation mark (!) means that the end of the line is a comment that the compiler
will just omit. A comment ends automatically at the end of the line; no specific termina-
tor is needed.

Simple variables

Simple variables have an implicit type:

- integer, if the first character is I–N

- real otherwise

Dangerous! Misspelled name will mean a different variable:

x0=1.0
if (xO.gt.O) ...

Declare all variables! Prevent the implicit typing:

implicit none

Simple types:

integer
real
logical (value is .true. or .false.)
complex
double precision
character

Internal representation of these may be different on different computers. Thus even the
same program may give different results. (This could be a sign of a unstable algorithm
that depends on the least significant bits of the numbers.)

The complete form of a variable declaration is

tyyppi (parameters), attributes :: nimi

Parameters determine the internal representation of the variable, attributes determine
array sizes and other properties related to memory allocation.

In F90 the precision can be defined in a machine independent way. But at the hardware
level only a few different types are realised; arbitrarily high precision is not available.

The precision of a variable is given by the kind attribute:

integer count
integer (kind=selected_int_kind(5)) :: count
integer (selected_int_kind(5)) :: count

Two latter forms declare an integer the representation of which requires at most 5 deci-
mal digits.

The value of the kind attribute is a small integer that will determine which one of the few
internal representations will be used. The details of these representations may vary.

⇒

The actual values of the attribute are not specified in the standard.

⇒

Intrinsic functions, like selected int kind are used to dig up the attribute value (that
the programmer doesn’t need to know).

integer, parameter :: maxn=1000
real, parameter :: pi=3.141592654

maxn and pi are constants that cannot be altered in the program.

real (kind=selected_real_kind(5)) :: a, b
real (kind=selected_real_kind(5,20)) :: c

Real numbers with an accuracy of 5 decimals; range of c is 10−20 – 1020.

integer, parameter :: short=selected_int_kind(4), &
long=selected_int_kind(7), &
longreal=selected_int_kind(10, 100)

integer (kind=short) :: i,j
integer (kind=long) :: bigint
real (kind=longreal) :: big

Constants

Integers

123
123_short
1234567_long

Real numbers

1.5
-1.5
1.5E10
1.5E-10
1.5_longreal
1.5E-10_longreal

Assignment operator =

i=100
x=1.5

Expressions

1.0+2.0*y/z**2-3.5*(y+x)

Normal associativity:

- first ** (raising to a power)

- then * and / from left to right

- finally + and - from left to right

- parentheses () can be used to alter the evaluation order

1) First, the expression on the right hand side of the assignment operator = is evaluated,
2) then converted to the type of the variable on the left hand side and
3) finally stored to the variable.

real x
x = 1/2 ! x=?

Be careful! Division of integers will result in an integer (integral part of the quotient)

If a real value is wanted, write e.g.

x=1.0/2

Intrinsic functions

Trigonometric functions (angles always in radians!):

sin(x), cos(x), tan(x)
asin(x), acos(x), atan(x), atan2(y,x)

Hyperbolic functions:

sinh(x), cosh(x), tanh(x)

Exponent, logarithm etc.

exp(x), log(x), log10(x), sqrt(x)

Minimum and maximum; arbitrary number of arguments

min(x, y, ...), max(x, y, ...)

Absolute value

abs(x)

Example: conversion to spherical coordinates

real x,y,z,r,phi,theta
real, parameter :: pi=3.141592654
x=-1.0 ; y=3.0; z=2.0
r=sqrt(x**2+y**2+z**2)
phi=atan2(y,x)*180.0/pi
theta=asin(z/r)*180.0/pi

Comparison operators

Two forms, old dotted notation, and new (from F90 onwards) more mathematical nota-
tion:

== .eq.
/= .ne.
< .lt.
<= .le.
> .gt.
>= .ge.

NB: = is assignment; comparison is ==.

integer n
logical d
d = n == 100*(n/100) ! true, if n divisible by 100
d = n .eq. 100*(n/100)

Logical constants

.true. .false.

Logical operators

.and.

.or.

.not.

X.and.Y is true, if and only if X==.true. and Y==.true..

X.or.Y is true, if X==.true. or Y==.true. or both are true.

.not.X is true, if X==.false..

Find if the given year y is a leap year:

logical leap, d4, d100, d400
integer y
...
d4 = y==4*(y/4)
d100 = y==100*(y/100)
d400 = y==400*(y/400)
leap = d4.and.(.not.d100 .or. d400)

Basic control strucures: serial code

Usually each statament on a line of its own; no separator is needed:

x=1.0
y=exp(-x**2/2)
z=1-y

There can be several statements on the same line separated by semicolons:

x = 1.0 ; y = 2.0 ; z = 0.1

Basic control strucures: selection

One alternative

if (x > 0.0) y = 1/x

if (x > 0.0 .and. x < 100.0) y=exp(x)

if (x > 0.0) then
y=1/x
z=log(x)

end if

Statements are executed only if the condition is true, otherwise nothing is done.

Be careful: the following form is not allowed:

if (x > 0.0) then y = 1/x

Two alternatives:

if (x > 0.0) then
y=1/x

else
y=0.0

end if

Several alternatives

if (x > 0.0) then
y=log(x)

else if (x < 0.0) then
y=-log(abs(x))

else
y=0.0

end if

Basic control strucures: repetition

Fixed number of iterations:

sum=0.0
do i=1,100
sum=sum+i

end do

The default step size of the loop is 1. Other values must be given explicitly

sum=0.0
do i=0,100,2 ! sum of even numbers
sum=sum+i

end do

do i=imin, imax, step ! variables can be used
sum = sum+i

end do

Repetition as long as a given condition is valid:

x=0.2
sum=0.0
term=1.0
do while (term > 0.0001)
sum = sum+term
term = term*x

end do

cycle: return to the beginning of the loop (like continue in C)

s=0.0
do i=1,100
read (5, *) x
if (x <= 0.0) cycle
s=s+log(x)

end do

n+ 1/2 cycle loop

Exit the loop by executing an exit statement (like break in C)

x0 = 0.5
do
x1=(1.0+x0)**0.2
! finish if the accuracy reached
if (abs(x1-x0) < 0.0001) exit
x0 = x1

end do

x0 = 0.5
n=0
do
x1=(1.0+x0)**0.2
if (abs(x1-x0) < 0.0001) exit
n=n+1
if (n > 100) exit
x0=x1

end do

Simple input and output

read (unit number, format) list of variables
write (unit number, format) list of variables
open (unit number, file attributes)
close (unit number)

Each file has a unique unit number (LUN, logical unit number).

Traditionally 5=card reader (nowadays a terminal), 6=line printer (the same terminal).

Format is a string that defines how the output is formatted. A free form is denoted by *.

read(5,*) x,y
z=x+y
write (6,*) x,y,z

