Interface block

Function as a parameter

We have a procedure for solving an equation. It would be nice if we could give the equa-
tion as a parameter to the function. Then we could use the same procedure to solve diffe-

rent equations in the same program.

Begin by considering a trivial example. Let the main program be in the file main.£90:



program main
real :: x(5) =1.0, summa
real, external :: f
summa=sub (f, x)
write(*,*) summa

contains

real function sub(f, x)
real, external :: f
real x(:)
sub=f (x)

end function

end program

The function sub gets the function f as a parameter. The procedure appearing as a pa-
rameter must be compiled separately. The attribute external tells that f is a separately
compiled external object.



Assume the function is in a file func.f90:

real function f (x)
real x(:)

f=sum(x)

end function

The program is compiled and linked the usual way:

£95 -0 ohjelma main.f90 func.£90

Properties of a separately compiled procedure are not known when compiling the main
program. Hence not even the number of parameters and their types can be checked.
When the program is executed an error in parameters may lead to the famous message
‘segmentaion fault’.



However, the proper form of the call of the procedure can be defined in an interface
block:

real function integrate(f, a, b)
implicit none

interface
real function f (x)
real, intent(in) :: x
end function

end interface

real, intent(in) :: a, b
sum=f (a)+f (b)

integrate=sum
end function



Here interface contains the declaration of the function and its arguments but no exe-
cutable code nor local variables. The interface block tells the compiler how the function
must be called; thus the compiler can check the correctness of the call.

The interface block can be created easily by copying the first few lines of the function de-
finition.



