
Modules

Package together into one file declarations of variables and procedures related to the sa-
me task.

module m
! type and variable declarations
...
contains
subroutine sub
!

end
...
end module

Procedures in a module can have its own internal procedures.

A module and declarations inside the module can be used with the use-statement,

No common areas are needed, since all decklarations inside a module are automatically vi-
sible to the program using the module.

A module is compiled separately and linked to user’s program.

Example: definition of constants.

module realnum
implicit none
integer, parameter :: single=selected_real_kind(5)
integer, parameter :: double=selected_real_kind(10)

end module

usage:

program realtest
use realnum
implicit none
real (kind=single) :: x
real (kind=double) :: y
...

end program

The module is compiled (with option -c) and the object code is stored into a file real-

num.o. The file is not executable.

The module is then linked to a program using it:

f95 -c realnum.f90
f95 -o realtest realnum.o realtest.f90

Use statement

Must be before all other declarations.

Obejcts inside a module can be referenced also by other names:

program realtest
use realnum, myreal=>double
implicit none
real (kind=myreal) :: x
...

end program

To use single precision, just change myreal=>double to myreal=>single. No other chan-
ges are needed.

The default is that all declarations in a module will be visible. This can also be restric-
ted:

program realtest
use realnum, only: double
...

end program

tai

program realtest
use realnum, only: myreal=>double
...

end program

- Explicitly seen what declarations are used.
- Avoid conflicts between own variables and module variables with the same name.

Example: a module for handling rational numbers.

We would like to write a program like

program koe
use ratpack
implicit none
type (rational) :: p, q, r
p=rat(1,2)
q=rat(2,3)
r=p+q
q=q+1
write(*,*) nomin(r),denom(r)
write(*,*) nomin(q),denom(q)
p=5
p= .inv. p
write(*,*) nomin(p),denom(p)

end program

Output of the program:

7 6
5 3
1 5

A simple version contains the definition of the type rational and functions for basic arith-
metic operations.

module ratpack
type rational
integer :: nominator, denominator

end type
contains

function mul (p, q)
! product of rational numbers p and q
type (rational) mul
type (rational), intent(in):: p, q
integer a,b,c,d
type (rational) r
a=p%nominator; b=p%denominator
c=q%nominator; d=q%denominator
r%nominator = a*c
r%denominator = b*d
mul = simplify (r)
return

end function

function div (p, q)
! quotient of rational numbers p and q
..
end function

function add (p, q)
! sum of rational numbers p and q
..
end function

function sub (p, q)
! difference of rational numbers p and q
..
end function

After each operation rational number must be reduced to the simplest form to prevent
the nominator and denominator from growing ever bigger.

function simplify (q)
! reduce the rational number q to its simplest form
! using the Euclidean algorithm
! the value of the function is the reduced number
type (rational) simplify
type (rational), intent(in):: q
integer a, b
a=q%nominator
b=q%denominator
do
if (a < b) then
c=a; a=b; b=c;

end if
do while (a >= b)
a = a-b

end do
if (a == 0) exit

end do

! b is now the greatest common factor
! of nominator and denominator
simplify%nominator = q%nominator/b
simplify%denominator = q%denominator/b
return

end function

end module

Using the package:

program koe
use ratpack
implicit none
type (rational) :: p, q, r

p%nominator=1; p%denominator=2
q%nominator=3; q%denominator=4
r=add(p,q)
write(*,*) r%nominator, r%denominator

end program

f95 -o koe ratpack.o koe.f90

After the use statement all types, variables and procedures declared in the module can be
used. The declarations are public.

A module may also contain private declarations that the user cannot access.

real, private, dimension(100) :: table

Even components of a public data type can be private:

type rational
integer, private :: nominator, denominator

end type

Now the user cannot directly access the components of the type rational. The compo-
nents can be set and read only by using procedures declared in the module.

The internal representation of the type can be changed without affecting user’s programs.
Names of components or even the whole method of representation can be changed.

Safe for data structures. The user cannot mess them up accidentally.

If the internal representation of rational numbers is private, we’ll need a procedure in the
module (having access to the nominator and denominator) for setting values of rational
numbers:

function rat (n, d)
! return a rational number with
! nominator=n denominator=d
type (rational) rat
integer, intent(in):: n, d
rat%nominator=n
rat%denominator=d
return

end function

We’ll also need procedures for finding the nominator and denominator of a rational num-
ber:

function nomin (p)
! return the nominator of a rational number
integer nomin
type (rational), intent(in):: p
nomin=p%nominator
return

end function

function denom (p)
! return the denominator of a rational number
integer denom
type (rational), intent(in):: p
denom=p%denominator
return

end function

Now the nominator and denominator cannot be accessed directly. Instead, we have to use
procedures of the module:

program koe
use ratpack
implicit none
type (rational) :: p, q, r

p=rat(1, 2)
p=rat(3, 4)
r=add(p,q)
write(*,*) nomin(p), denom(p)

end program

Generic procedures

The function max is an example of a generic procedure. Depending on the types of the
actual arguments it can return an integer, a real number, or a double precision number.

Generic procedure is a common name for a set of different procedures, one of which is se-
lected to be invoked depending on the types of the actual arguments.

Different versions of the procedure must have different types of formal parameters so that
it is possible to decide which one will be executed. Just reordering the arguments is not
enough, since keyword parameters can be used.

module div2
private
interface half
module procedure half1, half2

end interface
public :: half

contains

integer function half1(i)
integer, intent(in) :: i
half1 = i/2

end function

real function half2(x)
real, intent(in) :: x
half2 = x/2.0

end function
end module

Procedure half refers to two different procedures, one of which will be actually executed.
Here half1 and half2 are private, and cannot be called directly.

program divtest
use div2
integer :: i=10
real :: x=1.0
i=half(i)
x=half(x)
write(*,*) i,x

end program

Operator overloading

In principle an operator is a function of one or two variables. It can also be a generic
function. In the case of opreators the order of arguments is essential.

Continuing the example of rational numbers: Define a function for addition separately for
all possible type combinations.

interface operator (+)
module procedure ratint_add, intrat_add, add

end interface

...
contains
...

function add (p, q)
! sum of rational numbers p and q
type (rational) :: add
type (rational), intent(in):: p, q
...
! this is the previously defined function
...

end function

function ratint_add (p, i)
! lsum of a rational number p and integer i
type (rational) :: ratint_add
type (rational), intent(in):: p
integer, intent(in) :: i
integer a,b,c,d
type (rational) :: r
a=p%nominator; b=p%denominator
c=i; d=1
r%nominator = a*d + b*c
r%denominator = b*d
ratint_add = simplify (r)
return

end function

function intrat_add (i, q)
! lsum of an integer i and a rational number q
type (rational) :: intrat_add
integer, intent(in) :: i
type (rational), intent(in):: q
integer a,b,c,d
type (rational) :: r
a=i; b=1
c=q%nominator; d=q%denominator
r%nominator = a*d + b*c
r%denominator = b*d
intrat_add = simplify (r)
return

end function

Assignment

If both sides of an assignment statement are of the same type, no extra declarations are
needed.

If the assignment requires a non standard type conversion, we have to define what the
assignment operator will do.

For example, ”rational number = integer” is not automatically defined. We have to exp-
lain how the conversion should be made.

interface assignment (=)
module procedure intrat_subst

end interface
...

subroutine intrat_subst (p, i)
! assignment rational number p = integer i
integer, intent(in) :: i
type (rational), intent(out) :: p
p%nominator = i
p%denominator = 1
return

end subroutine

Another example: magnitude arithmetic. Magnitudes are logarithmioc quantities and
cannot be added. If we want to know the total magnitude of a binary star, we have to
first calculate the corresponding flux densities.

module magnitude
implicit none
type magnitude
real::m

end type
interface assignment (=)
module procedure magtoreal, realtomag

end interface
interface operator (+)
module procedure addmag

end interface
contains

Magnitude contains just a real number, but the value can be changed only using approp-
riate functions that will not do very much:

subroutine magtoreal(x, mag)
! assignment x=mag, convert magnitude -> real
real, intent(out) :: x
type (magnitude), intent(in) :: mag
x = mag%m

end subroutine

subroutine realtomag(mag, x)
! assignment mag=x, convet real->magnitude
real, intent(in) :: x
type (magnitude), intent(out) :: mag
mag%m = x

end subroutine

Addition of magnitudes: first convert to flux densities, add and convert back to magnitu-
des.

function addmag(m1, m2)
! "addition" of magnitudes
type (magnitude) :: addmag
type (magnitude), intent(in) :: m1, m2
real f
f = 10**(-0.4*m1%m) + 10**(-0.4*m2%m)
addmag%m = -2.5*log10(f)

end function
end module

Finally a main program to test our module:

program magtest
use magnitude
implicit none
type (magnitude) :: m1, m2, mtot
real x
m1 = 1.0
m2 = 2.0
mtot = m1+m2
x=mtot
write(*,*) x

end program

0.6361488

Own operators

It is possible to define own operators.

Dotted notation only (kuten .eq., .and. jne)

interface operator (.inv.)
module procedure inverse

end interface
...

function inverse (p)
! inverse of the rational number p
type (rational) inverse
type (rational), intent(in):: p
type (rational) r
r%denominator=p%nominator
r%nominator=p%denominator
inverse = simplify (r)
return

end function

It is convenient to pack frequently needed constants, type definitions and procedures into
modules.

Think which declarations should be kept private. It is not necessary that then user can
access everything, since that may lead to errors that are difficult to trace. Especially
when hadling complicated data structures it is better to provide the user just with a set
of well tested and reliable tools.

Think carefully which operations of own data types should be defined as operators. Ex-
cessive use of operators may make the program obscure.

Arithmetic operations must be natural or intuitive (what could the product of two mag-
nitudes mean?)

