
Pointers

A pointer is an animal pointing to some other variable.

real, pointer, dimension (:) :: p

Here p is a pointer that can point to an onedimensional array. No space is allocated for

the array at this time.

The operator => sets the pointer to point to an actual variable.

A pointer is not just an memory address of the variable, but a descriptor that contains

also some other information. A pointer can also point to an array section:



real, dimension(100,100), target:: x
real, pointer, dimension (:) :: p1
real, pointer, dimension (:,:) :: p2

p1 => x(1,:)
p1 => x(:,10)
p1 => x(1, 1:91:10)

p2 => x
p2 => x(2:3, 10:20)
p2 => x(1:11:2, 10:100:10)

In Fortran a pointer is like a synonymous name for the object it points to.



N.B.!

p=p+1

In C the pointer moves forward to point to the next element.

In Fortran the value of the object pointed by p is incremented by one.



The association status of a pointer can be:

- Undefined: it does not point anywhere.

- Null: it points to ’nothing’. This can be used e.g. as a sign of the end of a linked

data structure. Note that this is quite different from undefined.

- Associated: it points to a variable.

real, target :: x
real, pointer :: p
! p undefined

p => x
! p associated to x

nullify(p)
! p is null

If p is associated to a variable, the value of associated(p) is true.



Pointers can be used for dynamic memory allocation:

real, dimension(:), pointer :: p
...
allocate (p(1000))
...
deallocate(p)

This is convenient for handling linked data structures, like a binary tree:

type node
character (len=100) :: name
type (node), pointer :: left, right

end type node
type (node), pointer :: root, l, r

allocate(root, l, r)
root%name=’puun juuri’
root%left => l ! link to the left subtree
root%right => r ! link to the right subtree



Example: handling a linked list:

program linkedlist
! construct and print a list that will contain the input numbers
! in increasing order
implicit none
type node
integer :: value
type (node), pointer :: next

end type node
integer :: num
type (node), pointer :: first, current, p, q
! first points to the beginning of the list
! begin by creating an empty list
nullify(first)
! read numbers and add to the list
! finish when the given number is 0
do
read (*,*) num
if (num==0) exit
allocate(current) ! create a new record
current%value=num ! set its value field
! link the new record to a proper place in the list



if (.not.associated(first)) then
! the list is empty
current%next=>first
first=>current

else if (num <= first%value) then
! the number is smaller than the first number in the list
! the new record will be added at the beginning of the list
current%next=>first
first=>current

else
! otherwise proceed along the list
! the new record will be linked between the records
! pointed by p and q
q=>first; p=>first%next
do
if (.not.associated(p)) exit ! the list was exhausted
if (num <= p%value) exit ! a proper place was found
q=>p; p=>p%next ! move forward

end do
! link the record between p and q
current%next=>p
q%next=>current

end if



end do
! the list is complete, print it
current=>first ! 1. record of the list
! proceed until a null link is found
do
if (.not.associated(current)) exit
write (*,*) current%value
current=>current%next ! next record

end do
end program linkedlist



Potential problems with pointers:

Dangling reference: a pointer that points to a memory area that is no more used.

real, pointer :: p, q
...
allocate (p)
p=1.0
q=>p
deallocate(p) ! q = ?

Inaccessible memory area:

real, dimension(:), pointer :: p
...
allocate (p(1000))
...
nullify(p)

Memory has been allocated for the array, but there is no way to access it any more. The

space will become available only when the program terminates.


