Pointers

A pointer is an animal pointing to some other variable.

real, pointer, dimension (:) :: p

Here p is a pointer that can point to an onedimensional array. No space is allocated for
the array at this time.

The operator => sets the pointer to point to an actual variable.

A pointer is not just an memory address of the variable, but a descriptor that contains
also some other information. A pointer can also point to an array section:



real, dimension(100,100), target:: x
real, pointer, dimension (:) :: pl
real, pointer, dimension (:,:) :: p2

pl=>x(1,:)
pl =>x(:,10)
pl=>x(1, 1:91:10)

p2 => X

p2 => x(2:3, 10:20)
p2 =>x(1:11:2, 10:100:10)

In Fortran a pointer is like a synonymous name for the object it points to.



N.B.!
p=p+1
In C the pointer moves forward to point to the next element.

In Fortran the value of the object pointed by p is incremented by one.



The association status of a pointer can be:
- Undefined: it does not point anywhere.

- Null: it points to 'nothing’. This can be used e.g. as a sign of the end of a linked
data structure. Note that this is quite different from undefined.

- Associated: it points to a variable.

real, target :: x
real, pointer :: p
! p undefined

p=>X

| p associated to x
nullify(p)

! p is null

If p is associated to a variable, the value of associated(p) is true.



Pointers can be used for dynamic memory allocation:
real, dimension(:), pointer :: p
allocate (p(1000))

deallocate(p)

This is convenient for handling linked data structures, like a binary tree:

type node

character (len=100) :: name

type (node), pointer :: left, right
end type node
type (node), pointer :: root, 1, r

allocate(root, 1, r)

rootname=’puun juuri’

rootyleft =>1 I 1ink to the left subtree
root)right =>r ! 1ink to the right subtree



Example: handling a linked list:

program linkedlist
| construct and print a 1list that will contain the input numbers
l in increasing order
implicit none
type node
integer :: value
type (node), pointer :: next
end type node
integer :: num
type (node), pointer :: first, current, p, q
I first points to the beginning of the list
| begin by creating an empty list
nullify(first)
| read numbers and add to the list
| finish when the given number is O
do
read (*,*) num
if (num==0) exit
allocate(current) | create a new record
currentyvalue=num I set its value field
I 1ink the new record to a proper place in the list



if (.not.associated(first)) then
! the 1list is empty
current/next=>first
first=>current
else if (num <= first¥value) then
I the number is smaller than the first number in the list
! the new record will be added at the beginning of the list
currentjnext=>first
first=>current
else
! otherwise proceed along the list
I the new record will be linked between the records
| pointed by p and q
g=>first; p=>firstinext

do
if (.not.associated(p)) exit ! the list was exhausted
if (num <= p)value) exit | a proper place was found
qQ=>p; p=>phnext I move forward

end do

I 1ink the record between p and q
current/next=>p
gnext=>current

end if



end do
I the 1list is complete, print it
current=>first ' 1. record of the list
| proceed until a null link is found
do
if (.not.associated(current)) exit
write (*,*) currenty,value
current=>currentynext ! next record
end do
end program linkedlist



Potential problems with pointers:

Dangling reference: a pointer that points to a memory area that is no more used.
real, pointer :: p, q
allocate (p)

p=1.0

q=>p
deallocate(p) ' q=7

Inaccessible memory area:
real, dimension(:), pointer :: p
allocate (p(1000))
ﬁﬁilify(p)

Memory has been allocated for the array, but there is no way to access it any more. The
space will become available only when the program terminates.



