
Eigenvalues

In addition to solving linear equations another important task of linear algebra is finding
eigenvalues.

Let F be some operator and x a vector. If F does not change the direction of the vector
x, x is an eigenvector of the operator, satisfying the equation

F (x) = λx, (1)

where λ is a real or complex number, the eigenvalue corresponding to the eigenvector.
Thus the operator will only change the length of the vector by a factor given by the
eigenvalue.

If F is a linear operator, F (ax) = aF (x) = aλx, and hence ax is an eigenvector, too.
Eigenvectors are not uniquely determined, since they can be multiplied by any constant.



In the following only eigenvalues of matrices are discussed. A matrix can be considered
an operator mapping a vector to another one. For eigenvectors this mapping is a mere
scaling.

Let A be a square matrix. If there is a real or complex number λ and a vector x such
that

Ax = λx, (2)

λ is an eigenvalue of the matrix and x an eigenvector. The quation (2) can also be writ-
ten as

(A − λI)x = 0.

If the equation is to have a nontrivial solution, we must have

det(A − λI) = 0. (3)

When the determinant is expanded, we get the characteristic polynomial, the zeros of
which are the eigenvalues.

If the matrix is symmetric and real valued, the eigenvalues are real. Otherwise at least
some of them may be complex. Complex eigenvalues appear always as pairs of complex
conjugates.



For example, the characteristic polynomial of the matrix

(

1 4
1 1

)

is

det

(

1 − λ 4
1 1 − λ

)

= λ2 − 2λ − 3.

The zeros of this are the eigenvalues λ1 = 3 and λ2 = −1.

Finding eigenvalues usign the characteristic polynomial is very laborious, if the matrix
is big. Even determining the coefficients of the equation is difficult. The method is not
suitable for numerical calculations.



To find eigenvalues the matrix must be transformed to a more suiteble form. Gaussian
elimination would transform it into a triangular matrix, but unfortunately the eigenvalues
are not conserved in the transform.

Another kind of transform, called a similarity transform, will not affect the eigenvalues.
Similarity transforms have the form

A → A′ = S−1AS,

where S is any nonsingular matrix, The matrices A and A′ are called similar.



Power method

The power method is a simple method for finding the largest eigenvalue and the corre-
sponding eigenvector of a matrix.

Basically the same idea as in solving an equation by direct iteration.

The algorithm proceeds as
x0 = initial guess,

y1 = Ax0,

x1 = y1/ ‖ y1 ‖,

. . .

yk = Axk−1,

xk = yk/ ‖ yk ‖ .



The iteration is terminated when the values do not change more than the required accu-
racy.

The eigenvector is then the last iterata xk and the corresponding eigenvalue is

‖ yk ‖ / ‖ xk−1 ‖ .



program power
! find the largest eigenvalue by the power method
implicit none
integer, parameter:: n=2
real, dimension(n,n) :: a
real, dimension(n):: x0, x1, y
real :: norm, lambda, limit=0.0001
integer :: i

! the matrix
a(1,:) = (/ 1, 4/)
a(2,:) = (/ 1, 1/)

! initial guess of the eigenvector
x0 = 1.0



! iterate until the eigenvector does not change
do
do i=1,n
y(i) = dot_product(a(i,:), x0)

end do
norm = sqrt(dot_product(y, y))
x1 = y/norm
write(*,*) x1
if (maxval(abs(x1-x0)) < limit) then
lambda = sqrt(dot_product(y,y) / dot_product(x0, x0))
exit

end if
x0 = x1

end do

write(*,’("eigenvalue = "F8.3)’) lambda
write(*,’("eigenvector= "3F8.3)’) x0

end program



>./a.out
0.9284767 0.3713907
0.8804711 0.4740998
0.8987685 0.4384236
0.8929464 0.4501630
0.8949170 0.4462326
0.8942635 0.4475408
0.8944817 0.4471046
0.8944089 0.4472499
0.8944333 0.4472015

eigenvalue = 3.000
eigenvector= 0.894 0.447

The convergenc can be quite slow unless the highest eigenvalue is much bigger than the
smaller ones.



QR decomposition

A commonly used method for finding eigenvalues is known as the QR method. The
method is an iteration that repeatedly computes a decomposition of the matrix know as
its QR decomposition. The decomposition is obtained in a finite number of steps, and it
has some other uses, too. We’ll first see how to compute this decomposition.

The QR decomposition of a matrix A is

A = QR,

where Q is an orthogonal matrix and R an upper triangular matrix. This decomposition
is possible for all matrices.



There are several methods for finding the decomposition

1) Householder transform

2) Givens rotations

3) Gram–Schmidt orthogonalisation

In the following we discuss the first two methods with exemples. They will probably be
easier to understand than the formal algorithm.



Householder transform

The idea of the Householder transform is to find a set of transforms that will make all
elements in one column below the diagonal vanish.

Assume that we have to decompose a matrix

A =





3 2 1
1 1 2
2 1 3





We begin by taking the first column of this

x1 = a(:, 1) =





3
1
2





and compute the vector

u1 = x1− ‖ x1 ‖





1
0
0



 =





−0.7416574
1
2







This is used to create a Householder transformation matrix

P1 = I − 2
u1u

T
1

‖ u1 ‖2
=





0.8017837 0.2672612 0.5345225
0.2672612 0.6396433 −0.7207135
0.5345225 −0.7207135 −0.4414270





It can be shown that this is an orthogonal matrix. It is easy to see this by calculating the
scalar product of any two columns. The products are zeros, and thus the column vectors
of the matrix are mutually orthogonal.

When the original matrix is multiplied by this transform the result is a matrix with zeros
in the first column below the diagonal:

A1 = P1A =





3.7416574 2.4053512 2.9398737
0. 0.4534522 −0.6155927
0. −0.0930955 −2.2311854





Then we use the second column to create a vector

x2 = a(2 : 3, 2) =

(

0.4534522
−0.0930955

)

,



from which

u2 = x2− ‖ x2 ‖

(

1
0

)

=

(

−0.0094578
−0.0930955

)

.

This will give the second transformation matrix

P2 = I − 2
u2u

T
2

‖ u2 ‖2
=





1 0 0
0 0.9795688 −0.2011093
0 −0.2011093 −0.9795688





The product of A1 and the transformation matrix will be a matrix with zeros in the sec-
ond column below the diagonal:

A2 = P2A1 =





3.7416574 2.4053512 2.9398737
0 0.4629100 −0.1543033
0 0 2.3094011





Thus the matrix has been transformed to an upper triangular matrix. If the matrix is
bigger, repeat the same procedure for each column until all the elements below the diago-
nal vanish.



Matrices of the decomposition are now obtained as

Q = P1P2 =





0.8017837 0.1543033 −0.5773503
0.2672612 0.7715167 0.5773503
0.5345225 −0.6172134 0.5773503





R = A2 = P2P1A =





3.7416574 2.4053512 2.9398737
0 0.4629100 −0.1543033
0 0 2.3094011



 .

The matrix R is in fact the Ak calculated in the last transformation; thus the original
matrix A is not needed. If memory must be saved, each of the matrices Ai can be stored
in the area of the previous one. Also, there is no need to keep the earlier matrices Pi,
but P1 will be used as the initial value of Q, and at each step Q is always multiplied by
the new tranformation matrix Pi.

As a check, we can calculate the product of the factors of the decomposition to see that
we will restore the original matrix:

QR =





3 2 1
1 1 2
2 1 3



 .



Orthogonality of the matrix Q can be seen e.g. by calculating the productQQT:

QQT =





1 0 0
0 1 0
0 0 1





In the general case the matrices of the decomposition are

Q = P1P2 · · ·Pn,

R = Pn · · ·P2P1A.



Givens rotations

Another commonly used method is based on Givens rotation matrices:

Pkl(θ) =





















1

cos θ · · · sin θ
... 1

...
− sin θ · · · cos θ

1





















.

This is an orthogonal matrix.

Elements below the diagonal can be zeroed one at a time.

More efficient for sparse matrices (containing mostly zeroes).



Finding the eigenvalues

Eigenvalues can be found using iteratively the QR-algorithm, which will use the previous
QR decomposition. If we started with the original matrix, the task would be computa-
tionally very time consuming. Therefore we start by transforming the matrix to a more
suitable form.

A square matrix is in the block diagonal form if it is








T11 T12 T13 · · · T1n

0 T22 T23 · · · T2n

0 0
...

0 0 0 · · · Tnn









,

where the submatrices Tij are square matrices. It can be shown that the eigenvalues of
such a matrix are the eigenvalues of the diagonal blocks Tii.

If the matrix is a diagonal or triangular matrix, the eigenvalues are the diagonal ele-
ments. If such a form can be found, the problem is solved. Usually such a form cannot
be obtained by a finite number of similarity transformations.



If the original matrix is symmetric, it can be transformed to a tridiagonal form without
affecting its eigenvalues. In the case of a general matrix the result is a Hessenberg ma-
trix, which has the form

H =











x x x x x
x x x x x
0 x x x x
0 0 x x x
0 0 0 x x











The transformations required can be accomplished with Householder transforms or
Givens rotations. The method is now slightly modified so that the elements immediately
below the diagonal are not zeroed.



Transformation using the Householder transforms

As a first example, consider a symmetric matrix

A =







4 3 2 1
3 4 −1 2
2 −1 1 −2
1 2 −2 2







We begin to transform this using Householder transform. Now we construct a vector x1

by taking only the elements of the first column that are below the diagonal:

x1 =





3
2
1





Using these form the vector

u1 = x1− ‖ x1 ‖





1
0
0



 =





−0.7416574
2
1







and from this the matrix

p1 = I − 2u1u
T
1 / ‖ u1 ‖=





0.8017837 0.5345225 0.2672612
0.5345225 −0.4414270 −0.7207135
0.2672612 −0.7207135 0.6396433





and finally the Householder transformation matrix

P1 =







1 0 0 0
0 0.8017837 0.5345225 0.2672612
0 0.5345225 −0.4414270 −0.7207135
0 0.2672612 −0.7207135 0.6396433







Now we can make the similarity transform of the matrix A. The transformation matrix
is symmetric, so there is no need for transposing it:

A1 = P1AP1 =







4 3.7416574 0 0
3.7416574 2.4285714 1.2977396 2.1188066

0 1.2977396 0.0349563 0.2952113
0 2.1188066 0.2952113 4.5364723









The second column is handled in the same way. First we form the vector x2

x2 =

(

1.2977396
2.1188066

)

and from this

u2 = x2− ‖ x2 ‖ (1, 0)T =

(

−1.1869072
2.1188066

)

and

p2 =

(

0.5223034 0.8527597
0.8527597 −0.5223034

)

and the final transformation matrix

P2 =







1 0 0 0
0 1 00
0 0 0.5223034 0.8527597
0 0 0.8527597 −0.5223034









Making the transform we get

A2 = P2A1P2 =







4 3.7416574 0 0
3.7416574 2.4285714 2.4846467 0

0 2.4846467 3.5714286 −1.8708287
0 0 −1.8708287 1







Thus we obtained a tridiagonal matrix, as we should in the case of a symmetric matrix.



As another example, we take an asymmetric matrix:

A =







4 2 3 1
3 4 −2 1
2 −1 1 −2
1 2 −2 2







The transformation proceeds as before, and the result is

A2 =







4 3.4743961 −1.3039935 −0.4776738
3.7416574 1.7857143 2.9123481 1.1216168

0 2.0934787 4.2422252 −1.0307759
0 0. −1.2980371 0.9720605






,

which is of the Hessenberg form.



QR-algorithm

We now have a simpler tridiagonal or Hessenberg matrix, which still has the same eigen-
values as the original matrix. Let this transformed matrix be H. Then we can begin to
search for the eigenvalues. This is done by iteration.

As an initial value, take A1 = H. Then repeat the following steps:

– Find the QR decomposition QiRi = Ai.

– Calculate a new matrix Ai+1 = RiQi.



The matrix Q of the QR decomposition is orthogonal and A = QR, and so R = QTA.
Therefore

RQ = QTAQ

is a similarity transform that will conserve the eigenvalues.

The sequence of matrices Ai converges towards an upper tridiagonal or block matrix,
from which the eigenvalues can be picked up.



In the last example the limiting matrix after 50 iterations is







7.0363389 −0.7523758 −0.7356716 −0.3802631
4.265E − 08 4.9650342 −0.8892339 −0.4538061

0 0 −1.9732687 −1.3234202
0 0 0 0.9718955







The diagonal elements are now the eigenvalues. If the eigenvalues are complex numbers,
the matrix is a block matrix, and the eigenvalues are the eigenvalues of the diagonal 2 × 2
submatrices.



Singular value decomposition (SVD)

Eigenvalue programs can be used to find the SVD of a matrix.

The SVD of an n × m,n ≥ m matrix A is

A = UΣVT ,

where U is an n × n orthogonal matrix, V is an m × m orthogonal matrix, and

Σ =









σ1

...
σm

0











The values σi are called the singular values of the matrix A. They are square roots of the
eigenvalues of AT A. They are arranged in descending order: σ1 ≥ σ2 ≥ . . . σn ≥ 0.

The largest singular value σ1 equals the L2 norm of the matrix.

The columns of U are the eigenvectors of AAT .

The columns of V are the eigenvectors of AT A.



Applications of the SVD:

Linear least squares fit (can be used also when the normal equations are singular or near-
lyt singular; discussed later)

Data compression (also discussed later, maybe)


