
Equation solving

Even simple equations like ex = 5x cannot be solved analytically, or the expression of the
solution can be complicated (e.g. Cardano’s formula for third degree polynomial equa-
tions).

There are several methods for solving equations numerically. There is no single ”best”
method for all cases; the choice depends on the problem.

Direct iteration

Write the equation in the form x = f(x). First we guess somehow an initial value x0,
which will then be substituted to the righthand side of the equation to get an improved
solution x1 = f(x0). This iteration is continued until the values remain the same within
the required precision:

x0 = ...

x1 = f(x0),

x2 = f(x1),

...

xn+1 = f(xn),

...

x0

f (x0)

x1

f (x1)

y

x

y =
 x

y = f(x)

In principle any of the instances of the unknown in the equation can be expressed in
terms of the others; thus the equation can be written in the required form in many ways.
For example, the equation x5 − x − 1 = 0 can be expressed in the form x = x5 − 1 or
x = (1 + x)0.2.

Using the previous form and the initial value 0.5 we’ll get the following sequence of va-
lues:

x0 = 0.5,

x1 = −1.853215,

x2 = −22.85895,

x3 = −6241392,

Thus the approximations do not converge.

But the other form will give the sequence

x0 = 0.5,

x1 = 1.158242,

x2 = 1.166326,

x3 = 1.167199,

x4 = 1.167293,

x5 = 1.167303,

x6 = 1.167304,

x7 = 1.167304

In general, if the function appearing in the equation is a polynomial, the highest power of
the unknown should be solved in terms of the rest. No similar rules can be given for ot-
her kinds of equations; the simplest way is just to try which choice will give a convergent
sequence of approximations.

Interval halving

f(x) = x5 − x − 1 = 0.

f(1) = −1 < 0 and f(2) = 29 > 0, hence the equation must have at least one solution in
the range 1 < x < 2.

Halve the interval, and at see in which half the solution must be:

f(1.5) = 5.09 > 0, thus the polynomial will change its sign in the range 1 < x < 1.5.

f(1.25) = 0.802 > 0, thus the solution is in the range 1 < x < 1.25.

Etc.

a

f (a) b

f (b)

x

Due to halving the interval, each iteration gives one bit of extra information. One de-
cimal digit is roughly equal to three binary digits. Thus to improve the solution by one
significant figure about three iterations are needed.

Convergence is certain but slow.

OK, if the function evaluation is fast.

If the function is complicated (slow to calculate), this method may be too slow.

program halve
! solve f(x)=0 by interval halving
implicit none
real x
x = solve (1.0, 2.0)
write(*,*) x, f(x)

contains

real function f(x)
real, intent(in) :: x
f = x**5 - x - 1

end function f

real function solve (xmin, xmax)
real, intent(in) :: xmin, xmax
real :: x1, y1, & ! lower limit of interval

x2, y2, & ! upper limit
x0, y0 ! midpoint

x1=xmin; y1=f(x1)
x2=xmax; y2=f(x2)

x0=(x1+x2)/2 ; y0=f(x0)

do
if (y1 * y0 < 0) then ! solution in (x1,x0)
x2=x0
y2=f(x2)

else ! solution in (x0,x2)
x1=x0
y1=f(x1)

end if
x0=(x1+x2)/2
y0=f(x0)
if (abs(y0) < 0.0001) then ! accuracy achieved
solve=x0
exit

end if
end do

end function solve
end program halve

Regula falsi

In the case of the equation f(x) = x5 − x − 1 = 0 the absolute value of f(1) is much
smaller than f(2). It seems natural that the solution has to be closer to 1 than 2.

If the interval is short the function can be approximated by a straight line. If the end-
points of the interval are a and b, the equation of the line is

y = f(a) +
f(b) − f(a)

b − a
(x − a).

This intersects the x-axis at

x = a − f(a)
b − a

f(b) − f(a)
.

a b
f(a)

f(b)

b-a

f(b)-f(a)

x

Iteration can be continued by taking [a, x] or [x, b] as the new interval, depending on
which interval the function will change sign.

In principle the iteration formula can be written as

x =
af(b) − bf(a)

f(b) − f(a)
,

which has one floating point operation less. However, in the denominator we have a subt-
raction of nearly equal quantities, which is dangerous. Thus this form is not suitable for
programs.

Secant method

A problem of the previous method is a slow convergence near the root.

If the last two approximations are xn and xn−1, they determine a straight line

y = f(xn) +
f(xn−1) − f(xn)

xn−1 − xn

(x − xn).

xn

f (xn) xn−1

f (xn−1)

xn+1

The new zero point solved from this is

x = xn+1 = xn − f(xn)
xn−1 − xn

f(xn−1) − f(xn)
.

This method converges often more rapidly than the previous one.

f(x) =
1

x4
− 1 = 0.

Since f(1/2) > 0 and f(2) < 0, the solution is in the range 1/2 < x < 2. Assume that the
end points of this interval are the first two approximations.

x0 =0.5000, f(x0) = 15,

x1 =2.0000, f(x1) = −0.9375,

x2 =1.9118, f(x2) = −0.9251,

x3 = − 8.482.

The sequence of successive approximations does not converge; thus the secant method
does not find the solution at all.

Interval halving and regula falsi guarantee that the iterates remain all the time in a nar-
rowing range. In the secant method there is no such range, and the sequence of iterates
may even diverge.

x0 x1x2

Newton’s method

Previously we had the slope
f(xn−1) − f(xn)

xn−1 − xn

.

When the interval gets shorter this slope approaches the derivative of the function. If we
approximate this expression using the derivative, the iteration step will be

xn+1 = xn −
f(xn)

f ′(xn)
.

This iteration is called either Newton’s or Newton’s and Raphson’s method.

The derivative must be calculable. In practice, this means that the function has an ana-
lytic expression.

Newton’s method suffers from the same problem as the secant method. If the derivative
is small the method does not converge. The following theorem gives a criterion for the
convergence of the method:

Let f be differentiable in the interval [a, b], f(a)f(b) < 0, f ′(x) 6= 0, and f ′′(x) has the
same size in the whole interval. Newton’s method converges for an arbitrary initial value
in x0 ∈ [a, b], if

∣

∣

∣

∣

f(a)

f ′(a)

∣

∣

∣

∣

< b − a, and

∣

∣

∣

∣

f(b)

f ′(b)

∣

∣

∣

∣

< b − a.

Roots of a polynomial equation

All previously described methods finds one individual solution of an equation. Often that
is sufficient, and possible other solutions can be found by using different initial values.
Special cases are equations of the form Pn(x) = 0 where Pn is a polynomial of degree n.
According to the fundamental theorem of algebra the equation has n solutions (real or
complex), some of which may, however, be the same. For such equations there are met-
hods that will automatically find all roots without requiring suitable initial values for
each root.

The following method for finding the roots of a polynomial equation is known as the Q-
D-method (Quotient–Difference). Derivation of the method is, however, too complicated
to be presented here.

Assume we have the equation

Pn(x) = a0 + a1x + a2x
2 + . . . + anxn = 0.

Calculate numbers qi, i = 1, ...n and ei, i = 0, ..., n in the following manner. Begin by

calculating initial values
qi = 0, i = 1, ..., n − 1

qn = −an−1/an,

e0 = 0,

ei = ai−1/ai, i = 1, ..., n − 1,

en = 0.

Then update the arrays q and e alternatingly:

qi = ei−1 − ei + qi, i = 1, ..., n

ei =

(

qi

qi+1

)

ei, i = 0, ..., n.

When the values of e approach zero, the values of q approach the zeros of the polynomial.

As an example, consider the equation x3 − 6x2 + 11x − 6 = 0, which has roots 1, 2 and 3.

program qd
! find all roots of a polynomial equation
integer, parameter :: n=3
real, dimension (0:n) :: a = (/ -6, 11, -6, 1 /), &

e = 0, q = 0
real, parameter :: limit = 1.0e-5
integer :: i, kierros=0

q(n) = -a(n-1)/a(n)
do i=1,n-1
e(i) = a(i-1)/a(i)

end do
write (6, ’(8F8.4)’) e, q
! iterate
do
do i=1,n
q(i) = e(i-1)-e(i)+q(i)

end do
do i=0,n-1
e(i) = q(i)/q(i+1) * e(i)

end do

kierros = kierros+1
if (kierros > 100) then
write(6,’("iteration does not converge")’)
exit

end if
if (maxval(abs(e)) < limit) exit
write (6, ’(8F8.4)’) e, q

end do
end program

The elements e(0) and e(3) are not actually needed, since they are always zeros. Omit-
ting them would save only two words of memory but the program would be more comp-
licated, since the first q-value q(1) should be handled in a different way. This is a simp-
le example of a case in which a suitable choice of data structures the program becomes
simpler.

Output of the example program:

e(0) e(1) e(2) e(3) q(1) q(2) q(3)
0.0000 -0.5455 -1.8333 0.0000 0.0000 0.0000 6.0000
0.0000 -0.2310 -0.5667 0.0000 0.5455 1.2879 4.1667
0.0000 -0.1105 -0.2556 0.0000 0.7765 1.6235 3.6000
0.0000 -0.0554 -0.1351 0.0000 0.8870 1.7686 3.3444
0.0000 -0.0283 -0.0778 0.0000 0.9424 1.8483 3.2093
0.0000 -0.0144 -0.0472 0.0000 0.9706 1.8979 3.1315
0.0000 -0.0074 -0.0295 0.0000 0.9851 1.9306 3.0843
0.0000 -0.0037 -0.0189 0.0000 0.9924 1.9528 3.0548
...

0.0000 0.0000 0.0000 0.0000 1.0000 1.9999 3.0001
0.0000 0.0000 0.0000 0.0000 1.0000 1.9999 3.0001
0.0000 0.0000 0.0000 0.0000 1.0000 1.9999 3.0001
0.0000 0.0000 0.0000 0.0000 1.0000 2.0000 3.0000

As we see, convergence can be quite slow. Thus the method may not be useful for finding
exact values of the roots. Instead, when sufficiently distinct values have been found, they
can be used as initial values for some other method.

If any of the coefficients of the polynomial is zero, the initialization will lead to division
by zero. This can be avoided by changing the variable. For example, in the equation x3 −
x+1 = 0 we cn substitute x = y +1 to get the equation y3 +3y2+2y +1 = 0. The actual
roots are obtained by adding one to the solutions.

This example shows also another problem: the solution does not converge. The method
will find one root, but the two other values will oscillate. This means that two of the
roots are complex valued.

Sets of equations

There can be several unknowns and equations. Methods do not need essential modifica-
tions. The unknown can be taken as a vector x, the components of which are given sui-
table initial values. Iteration will then give vectors that approach the solution.

In the case of several variables one has to determine how to update the solution vector:

1) Find all components of the new solution vector using only the values of the previous
solution, and update the whole vector at the same time.

2) Update each component as soon as it is calculated.

Accuracy of the solution

A natural requirement is that if x̃ is an approximate solution of the equation f(x) = 0 we
must have

|f(x̃)| < ǫ,

where ǫ is some predefined accuracy.

If f ′(x̃) is small |f(x̃)| can be small in a wide interval around the true solution.

The solution should be such that also |x0 − x̃| is small, where x0 is the actual zero point
of the function. Since x0 is unknown, this error cannot be calculated. If the derivative is
known, the error can be estimated.

x0
x∼

f (x∼)
x0

x∼
f (x∼)

Close to the zero point x0 the function is approximately

f(x) ≈ f ′(x0)(x − x0),

whence

x − x0 ≈
f(x)

f ′(x0)
.

When x = x̃,

x̃ − x0 ≈
f(x̃)

f ′(x0)
.

If the derivative does not change very rapidly around the solution, we have approximate-
ly

x̃ − x0 ≈
f(x̃)

f ′(x̃)
.

Thus the approximate solution is close to the true solution if

∣

∣

∣

∣

f(x̃)

f ′(x̃)

∣

∣

∣

∣

< ǫ.

In addition, it is naturally required that the value of the function itself, f(x̃), is small.

