
Fitting functions to data

1. Approximating a known function

- evaluating a function using basic arithmetic only

- computing the original function may be inefficient

The function is known exactly at some points. Other values are found by interpolation.



- the function and its derivatives known at one point

- Taylor series

- Padé approximation

- equally spaced points

- interpolation polynomials

- arbitrary set of points

- Lagrangian interpolation

- spline functions

- bezier curves



2. Least squares fit

Random errors in data, cannot be described exactly.

- linear fir (linear combination of arbitrary functions)

- nonlinear fit



Criteria of the fit

We try to minimize the ”distance” d(f, g) of the functions or the norm ‖ f − g ‖. The
norm can be defined in many ways

L1 norm

‖ f − g ‖1=

∫

|f − g| dx

This allows large deviations if they occur in a narrow range.

L2 norm corresponds to the distance in an Euclidean space:

‖ f − g ‖2=

√

∫

|f − g|2 dx.



This is a special case of the more general Lp norm

‖ f − g ‖p=

(∫

|f − g|p dx

)1/p

.

L∞ norm or maximum norm

‖ f − g ‖∞= sup |f − g|.

This prevents large deviations but the fit may not be very good anywhere.



Taylor series

Let f be a function f : R → R. The equation of the tangent at x0 is

y = f(x0) + f ′(x0)(x − x0),

where f ′(x0) is the derivative df/dx at x0. The function in the neighborhood of x0 can
be approximated by the tangent:

f(x) ≈ f(x0) + f ′(x0)(x − x0).

The estimate is the worse the more the derivative f ′ varies in the interval [x0, x]. This
variation is described by the second derivative f ′′ etc.

At x the function has the value

f(x) = f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2 + . . .

+
1

n!
f (n)(x0)(x − x0)

n + . . .

where f (n)(x0) is the n:th derivative of f at x0. This is the Taylor series of the function
f at x0.



Examples (in all these x0 = 0):

1

1 + x
= 1 − x + x2 − x3 + · · · converges, when|x| < 1

1

1 − x
= 1 + x + x2 + x3 + · · ·

√
1 + x = 1 +

1

2
x − 1

8
x2 +

1

16
x3 − · · ·

√
1 − x = 1 − 1

2
x − 1

8
x2 − 1

16
x3 − · · ·

1√
1 + x

= 1 − 1

2
x +

3

8
x2 − 5

16
x3 − · · ·

1√
1 − x

= 1 +
1

2
x +

3

8
x2 +

5

16
x3 + · · ·

ex = 1 + x +
1

2!
x2 +

1

3!
x3 + · · · + 1

n!
xn + · · · for all x

ln(1 + x) = x − 1

2
x2 +

1

3
x3 − 1

4
x4 + · · · x ∈ (−1, 1]

sin x = x − 1

3!
x3 +

1

5!
x5 − · · · for all x

cos x = 1 − 1

2!
x2 +

1

4!
x4 − · · · for all x

tanx = x +
1

3
x3 +

2

15
x5 + · · · |x| <

π

2



Very often we’ll need linear approximations like

√
1 + x ≈ 1 +

1

2
x,

1√
1 + x

≈ 1 − 1

2
x,

These can be used to linearize functions in a very small neighborhood of some point.



Rational approximations

Use a rational expression to approximate the function

a0 + a1x + . . . + anx4

1 + b1x + . . . bmxm
.

Finding the coefficients will usually mean an optimization problem.

A simple and often used method is the Padé approximation.

Example: the Taylor saries of the exponential function at x = 0 is

f(x) = ex = 1 + x +
1

2
x2 +

1

6
x3 + . . .

Try to find a rational approximation of the form

R(x) =
a + bx + cx2

1 + dx
.



We now require that at x = 0 this will give the same value as the Taylor series and the
derivatives are equal

Consider the difference

f(x) − R(x) = 1 + x +
1

2
x2 +

1

6
x3 − a + bx + cx2

1 + dx

=
(1 + x + 1

2x2 + 1
6x3)(1 + dx) − (a + bx + cx2)

1 + dx
.

It is required that at the origin this difference anb its derivatives will vanish. The nomi-
nator must be zero for all x.



Expand the nominator and regroup the terms according to powers of x:

(1 − a) + (1 + d − b)x +

(

1

2
+ d − c

)

x2 +

(

1

6
+

1

2
d

)

x3 +
1

6
x4.

This will vanish for all x if all coefficients of the powers of x are zero. It is not possible to
make the last term vanish, but we can drop it because we are searching for a third degree
approximation.

We get a set of equations
1 − a = 0,

1 + d − b = 0,

1

2
+ d − c = 0,

1

6
+

1

2
d = 0,



whence
a = 1,

b =
2

3
,

c =
1

6
,

d = −1

3
.

Thus the approximation is

f(x) =
1 + 2

3x + 1
6x2

1 − 1
3x

.

E.g. at x = 1 a Taylor series of four terms would give 22
3 ≈ 2.667. The rational approxi-

mation will give f(1) = 11
4 = 2.750.

Same problem as with the Taylor series: exactly correct value at one point but cannot
minimize error elsewhwere.



Chebychev polynomials

Recurrence relation

cos(n + 1)φ + cos(n − 1)φ = 2 cos φ cos nφ.

Proof:
cos(n + 1)φ + cos(n − 1)φ

= cos(nφ + φ) + cos(nφ − φ)

= cos nφ cos φ − sin nφ sin φ + cos nφ cos φ + sinnφ sin φ

= 2 cos nφ cos φ.



The recurrence relation gives

cos 2φ = 2 cos2 φ − 1,

cos 3φ = 2 cos φ cos 2φ − cos φ

= 4 cos3 φ − 3 cos φ

...

Cosines of the multiples of the angle φ can be expressed in a form containing powers of
cos φ only. We get expressions that are polynomials of cosφ.



We’ll denote
x = cos φ,

Define the Chebychev polynomial Tn as

Tn(x) = cos nφ = cos(n arccos x).

T0(x) = cos 0 = 1,

T1(x) = cos arccos x = x.

T2(x) = cos(2 arccos x) = cos 2φ

= 2 cos2 φ − 1

= 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x.

Assume that x is always in the range −1 ≤ x ≤ +1.



Properties

Symmetry:
Tn(−x) = (−1)nTn(x).

Zeros of the polynomials

Since the zeros of the unction cosφ are φ = (2k + 1)π/2, k = 0, 1, . . ., the zeros of the
function cosnφ are

φ =
2k + 1

n

π

2
, k = 0, 1, . . .

Since Tn(x) = cos nφ, these are also zeros of the polynomial Tn. In terms of x the zeros
are

xk = cos

(

2k + 1

n

π

2

)

, k = 0, 1, . . . , n − 1.



Orthogonality

Chebychev polynomials form a set of orthogonal functions, if we use a weight function
1/
√

1 − x2:
∫ +1

−1

Tn(x)Tm(x)√
1 − x2

dx =

{

0, n 6= m,
π/2, n = m 6= 0,
π, n = m = 0.

For a finite set of points the orthogonality is valid in the form

K
∑

i=0

Tn(xi)Tm(xi) =

{

0, n 6= m,
(K + 1)/2, n = m 6= 0,
K + 1, n = m = 0,

where the points xi are the zeros of the polynomial TK+1, n ≤ K, m ≤ K.



Minimality

By definition, a Chebychev polynomial is a cosine of some angle. Thus its absolute value
cannot exceed one. Its extrema are either 1 or −1. Thus its maximum norm is exactly 1.

Using the recurrence formula it can be shown that the coefficient of the highest power of
the polynomial is 2n−1. If the polynomial is multiplied by 21−n, we’ll get a polynomial
with one as the coefficient of the highest power.

Among all polynomials having one as the coefficient of the highest power, the polynomial
21−nTn has the smallest maximum norm.



The polynomial 21−nTn has n + 1 extrema in the range −1 ≤ x ≤ 1. Of these, n − 1 are
points where the derivative will vanish. In addition to these, the polynomial has extrema
also at the endpoints of the interval. Let the locations of the extrema be x0 = −1, x1,
. . ., xn = 1. These are minima and maxima alternatively. Assume that x0 is a maximum.

Assume that there is another polynomial Pn of degree n with a smaller maximum norm.
Since x0 is a maximum of the polynomial 21−nTn, we must have

P (x0) < 21−nTn(x0).

Correspondingly x1 is a minimum, where

P (x1) > 21−nTn(x1).



Thus at the extrema Pn is alternatingly smaller or greater than 21−nTn.

Pn(x0) − 21−nTn(x0) < 0,

Pn(x1) − 21−nTn(x1) > 0,

Pn(x2) − 21−nTn(x2) < 0,

...

The function Pn(x) − 21−nTn(x) will change sign n times. Since in both terms the coef-
ficient of the highest power is one, these highest powers cancel out, and the function is a
polynomial of degree n − 1. Such a polynomial can have only n − 1 zeros, and it cannot
change sign n times. Contradiction ⇒ our assumption is false.

How to place n points xk, k = 1, . . . , n in the range −1 ≤ x ≤ 1 in such a way that the
maximum norm of the polynomial (x−x1)(x−x2) · · · (x−xn) will be as small as possible?
Answer: the points must be zeros of the Chebychev polynomial Tn.



Interpolation

Equally spaced data

The function is known at the points xi, f(xi) = yi.

i x f(x) ∆f ∆2f ∆3f

−1 x−1 yi−1

∆f−1

0 x0 y0 ∆2f−1

∆f0 ∆3f−1

1 x1 y1 ∆2f0

∆f1

2 x2 y2

Denote h = x1 − x0.



Step operator Ef(x) = f(x + h).

Forward difference ∆f(x) = f(x + h) − f(x).

Backward difference ∇f(x) = f(x) − f(x − h).

All are linear operaators

The operators have e.g. the following obvious properties:

E2f(x) = E(Ef(x)) = E(f(x + h)) = f(x + 2h).

Enf(x) = f(x + nh).

∆f(x) = f(x + h) − f(x) = Ef(x) − f(x) = (E − 1)f(x),

whence
∆ = E − 1.



Newton-Gregory interpolation polynomial:

P (x0 + sh) = Esf(x0) = (1 + ∆)sf(x0)

=

[

1 + s∆ +

(

s

2

)

∆2 + . . .

]

f(x0)

= f0 + s∆f0 +

(

s

2

)

∆2f0 + . . .

P2(x0 + sh) = f0 + s∆f0 +
s(s − 1)

2
∆2f0.

When s = 0, 1, 2, this will go through the points (x0, y0), (x0 + h, y1) and (x0 + 2h, y2):

P2(x0) = P2(x0 + 0h) = y0,

P2(x1) = P2(x0 + 1h) = y0 + ∆f0 = y1,

P2(x2) = P2(x0 + 2h) = y0 + 2∆f0 + ∆2f0 = y2



P2 can be understood also as a function of s, where s = (x − x0)/h is an arbitrary real
number.

In the same manner interpolation polynomials of higher degree can be derived.

Instead of forward differences it is possible to use backward differences or both together.



Methods using differences can be applied to equally spaced data only.

Example:

x y
10 2.0
30 3.0
50 3.8
75 4.8
100 5.2

Since there are 5 points in the data, a fourth degree polynomial can describe it exactly:

y = P4(n) = a0 + a1x + a2x
2 + a3x

3 + a4x
4.



Substituting the given values we get a set of equations

a0+ 10a1+ 100a2+ 1000a3+ 10 000a4= 2.0,

a0+ 30a1+ 900a2+ 27 000a3+ 810 000a4= 3.0,

a0+ 50a1+ 2500a2+ 125 000a3+ 6250 000a4= 3.8,

a0+ 75a1+ 5625a2+ 421 875a3+ 31640 625a4= 4.8,

a0+100a1+10 000a2+1000 000a3+100000 000a4= 5.2.

This is a set of linear equations, the solution of which is

a0 = 1.234,

a1 = 0.09115,

a2 = −0.001672,

a3 = 0.00002347,

a4 = −0.0000001189.

Laborious! This is not the way to do it.



Lagrangian interpolation

First, find a set of cardinal functions; they are polynomials, whose values at the given
points are only zeros or ones.

If there are n points, we’ll need n cardinal functions, Li, i = 1, . . . , n. They are chosen so
that Li(xi) = 1, Li(xj) = 0, i 6= j.

In the previous example n = 4, and the cardinal functions are polynomials of degree four.
Acoording to the fundamental theorem of algebra they can be expressed as products of
four factors:

L1(x) = A1(x − x2)(x − x3)(x − x4)(x − x5),

...

L5(x) = A5(x − x1)(x − x2)(x − x3)(x − x4).

The constants Ai are given by the condition Li(xi) = 1; for example

A(x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5) = 1.



Thus the first cardinal function is

L1(x) =
x − x2

x1 − x2

x − x3

x1 − x3

x − x4

x1 − x4

x − x5

x1 − x5
.

The cardinal functions of the example are

L1(x) =
1

4680000
(x − 30)(x − 50)(x − 75)(x − 100),

L2(x) =
1

−800000
(x − 10)(x − 50)(x − 75)(x − 100),

L3(x) =
1

700000
(x − 10)(x − 30)(x − 75)(x − 100),

L4(x) =
1

−1421875
(x − 10)(x − 30)(x − 50)(x − 100),

L5(x) =
1

7875000
(x − 10)(x − 30)(x − 50)(x − 75).



The interpolation polynomial can be expressed as a linear combination of the cardinal
functions:

P (x) = y1L1(x) + y2L2(x) + · · · + ynLn(x).

In the example we have

P (x) = 2L1(x) + 3L2(x) + 3.8L3(x) + 4.8L4(x) + 5.2L5(x).



0

3

6

    0   50 100

Polynomials are good for interpolation, not for extrapolation.



Spline functions

Example:

x y
0.0 0
1.2 6
2.0 11
3.5 9
4.1 17
5.0 24

The data cannot be described well using one function only.

Use a piecewise fit: the data is divided into appropriate parts, and a different function is
used for each part.

Spline functions are third degree polynomial, whose coefficients are chosen so that at the
boundaries of the parts second derivatives are continuous.



In the example there are 6 points and 5 intervals. We use five third degree polynomials
to represent the data.

Si(x) = ai + bi

(

x − xi

hi

)

+ ci

(

x − xi

hi

)2

+ di

(

x − xi

hi

)3

, i = 1, . . . , 5,

where
hi = xi+1 − xi.

The first and second derivatives are:

S′

i(x) =
1

hi

(

bi + 2ci

(

x − xi

hi

)

+ 3di

(

x − xi

hi

)2
)

,

S′′

i (x) =
1

(hi)2

(

2ci + 6di

(

x − xi

hi

))

.



The polynomial representing the first interval must pass through both endpoints:

S1(0) = a1 = 0,

S1(1.2) = a1 + b1 + c1 + d1 = 6.

At the final point of the first interval the first and second derivative of the polynomial
S1 must be equal to the derivatives of the polynomial S2 at the beginning of the second
interval:

S′

1(1.2) = S′

2(1.2),

S′′

1 (1.2) = S′′

2 (1.2),

or
1

1.2
(b1 + 2c1 + 3d1) =

1

0.8
b2,

1

1.22
(2c1 + 6d1] =

1

0.82
2c2.



In the example there are 5 intervals, and for each interval we get four equations. Thus,
in principle, there are 20 equations. However, the equations for the derivatives cannot be
formed for the last interval. Thus there are 18 equations but 20 constants to ve determi-
ned.

There are many ways to select the two missing constants.

Natural spline: second derivatives zeros at the first and last points.

S′′

1 (0) = 2c1 = 0,

S′′

5 (5) = 2c5 + 6d5 = 0.



We get a set of linear equations:

a1 = 0,
a1 + b1 + c1 + d1 = 6,
b1 + 2c1 + 3d1 − 1.500b2 = 0,

2c1 + 6d1 − 4.5002c2 = 0,
2c1 = 0,

a2 = 6,
a2 + b2 + c2 + d2 = 11,
b2 + 2c2 + 3d2 − 0.533b3 = 0,

2c2 + 6d2 − 0.5692c3 = 0,
...

a5 = 17,
a5 + b5 + c5 + d5 = 24,

2c5 + 6d5 = 0,

The coefficients ai are obtained directly and can be substituted to other equations.



The solution is
i ai bi ci di

1 0.0 4.54 0.00 1.46
2 6.0 5.94 1.94 −2.89
3 11.0 2.19 −23.68 19.50
4 9.0 5.32 5.57 −2.89
5 17.0 11.67 −7.00 2.33

  0

10

20

0 1 2 3 4 5



The set of equations obtained is not in the most convenient form.

y = ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3,

yi = ai,

yi+1 = ai + bihi + cih
2
i + dih

3
i ,

y′ = bi + 2ci(x − xi) + 3di(x − xi)
2,

y′

i = bi,

y′

i+1 = bi + 2cihi + 3dih
2
i ,

y′′ = 2ci + 6di(x − xi),

y′′

i = 2ci,

y′′

i+1 = 2ci + 6dihi



Let’s take the values of the second derivatives Di = y′′

i as the new variables. For the unk-
nown variables we get the expressions

ai = yi,

ci = Di/2,

di = (Di+1 − Di)/6hi,

bi =
yi+1 − yi

hi
− 2hiDi + hiDi+1

6
.



At the beginning of the interval i we have y′

i = bi. Using the previous interval the deriva-
tive is

y′

i = bi−1 + 2ci−1(xi − xi−1) + 3di−1(xi − xi−1)
2

= bi−1 + 2ci−1hi−1 + 3di−1h
2
i−1.

These expressions must be equal. We’ll then express the constants in terms of the deriva-
tives Di and the y values:

y′

i =
yi+1 − yi

hi
− 2hiDi + hiDi+1

6

= 3

(

Di − Di+1

6hi−1

)

h2
i−1 + 2

(

Di−11

2

)

hi−1

+
yi − yi−1

hi−1
− 2hi−1Di−1 + hi−1Di

6
,



which yields
hi−1Di−1 + (2hi−1 + 2hi)Di + hiDi+1

= 6

(

yi+1 − yi

hi
− yi − yi−1

hi−1

)

,

i = 2, . . . , n − 1.

Here we have n−2 equations and n unknowns Di. Additionally, we can take, for example,
D1 = Dn = 0, in which case the coefficient matrix is













2(h1 + h2) h2 0 0 · · · 0 0
h2 2(h2 + h3) h3 0 · · · 0 0
0 h3 2(h3 + h4) · · · 0 0
...
0 0 0 · · · hn−2 2(hn−2 + hn−1)













.

This is a tridiagonal set of equations, which is easy to solve.



subroutine cubicspline(n, x, y, a, b, c, d)
integer, intent(in) :: n
real, intent(in), dimension(maxpoint) :: x, y
real, intent(out), dimension(maxpoint) :: a, b, c, d

integer i
real, dimension(maxpoint,4) :: u
real, dimension(maxpoint) :: s, h
real t

do i=1,n-1 ! h = step in x direction
h(i) = x(i+1)-x(i)

end do

do i=1,n-2 ! calculate the coefficient matrix
u(i, 1) = h(i)
u(i, 2) = 2*(h(i)+h(i+1))
u(i, 3) = h(i+1) ! right hand side vector
u(i, 4) = 6.0* ((y(i+2)-y(i+1))/h(i+1) &

- (y(i+1)-y(i))/h(i))
end do



u(1,1) = 0.0
u(n-2,3) = 0.0

do i=2,n-2 ! elimination
t = u(i, 1)/u(i-1, 2)
u(i, 2) = u(i,2) - t * u(i-1, 3)
u(i, 4) = u(i,4) - t * u(i-1, 4)

end do

u(n-2,4) = u(n-2,4) / u(n-2,2) ! back substitution
do i=n-3,1,-1
u(i,4) = (u(i, 4) - u(i, 3) * u(i+1, 4))/u(i,2)

end do

s(1) = 0.0 ! second derivatives
do i=2,n-1
s(i)=u(i-1,4)

end do
s(n) = 0.0

do i=1,n-1 ! spline coefficients
a(i) = y(i)
b(i) = (y(i+1)-y(i))/h(i) - (2.0*h(i)*s(i) + h(i)*s(i+1))/6.0



c(i) = s(i) / 2.0
d(i) = (s(i+1)-s(i))/(6*h(i))

end do

end subroutine



Splines can be ”stiffened” to avoid sharp bends, but then they do not describe the data
exactly.

Splines are good for interpolation, not for extrapolation. (They are polynomials!)

If the data contains sharp turns or long empty gaps, extra bends or big oscillations may
appear.

Problems can be fixed by adding more data points. It is importanta that the data set is
dense enough near sharp bends.

If one point of the data set is changed, the whole solution must be recomputed. The coef-
ficient matrix is a band matrix, and the disturbance due to changing one point will usual-
ly diminish quickly when moving further from that point.



Example: Runge’s function

y =
1

1 + 25x2
.

0

1

-2 -1 0 1 2



Twodimensional curves

This far we have assumed that the x values are monotonously increasing.

If the data represents a general plane curve, the x coordinate cannot be used as the inde-
pendent variable.

If both coordinates depend on some paramater t, that can be used as the independent va-
riable. We get two functions x = x(t) and y = y(t) that can be described separately using
spline.

Otherwise we have to select some parametrisation. For example

xi(t) = ai + bit + cit
2 + dit

3,

yi(t) = a′

i + b′it + c′it
2 + d′it

3.

where 0 ≤ t ≤ 1.



Bézier curves

Bernštein interpolation polynomial is a curve in the complex plane

z(t) = (1 − t)3z1 + 3t(1 − t)2z2 + 3t2(1 − t)z3 + t3z4,

whwre 0 ≤ t ≤ 1 and the points zi are the four control points of the curve.

Pierre Bézier introduced these in the 1960’s to computer aided design.

Bézier curve is defined in terms of two endpoints and two control poinys. The curve will
always pass through the endpoints. The control points give the directions of the tangent
at the endpoints.

The curve will start from the endpoint in the direction of the control point. The further
away the control point is the more straight the curve is.

Convenient in interactive applications.

The PostScript language contains an operator (curveto) for drawing Bézier curves.




