
Image processing

Errors of measurements

Many source of errors affect observations, like CCD images:

- Diffraction and seeing blur the image.

- The imaging optics causes geometric distortions.

- The imaging hardware itself produces some noise. The amount of noise is given by
the signal to noise ratio. The ratio can be improved (increased) by repeating the
obsevation several times and taking the average of the observations.

- Discretisation of the signal, depending on the number of bits of the A/D converter,
causes some error. This is a random error that does not affect the average of seve-
ral measurements. Statistical methods can be applied to control the effect.



- Sensitivity of different cameras at different wavelengths is different. This is a sys-
tematic error that can be detected only after comparing the data with observations
made eith other instruments. Observations made with the same camera can be sys-
tematically wrong but still compatible with each others. When comparing observa-
tions made with different instruments, each instrument must be calibrated separate-
ly.

- The image may have reflections of bright objects (like the Moon). The problem is
that different observations are incompatible, due to changing conditions. If a va-
riable star is observed at different altitudes, the atmospheric perturbations are diffe-
rent. Observing comparison stars this error can be removed at least partly.

- The object may be so bright that the image is saturated and no measurement value
is obtained. It is only known that the brightness exceeds some limit.



- Other perturbations (cosmic rays, disturbances due to poor electric isolation etc.).

- The data may also contain single deviating values (outliers). They can be erroneous
observations or due to some external source. The reason for such deviations should
be found out in order not to throw out exceptional but real observations that might
indicate some interesting phenomenon.

- Many observing methods involve their own specific reduction techniques to convert
the raw data into actual values that can be analysed. An example in image proces-
sing is the removal of geometric distortions caused by the imaging system.



The purpose of image processing is to deal with these problems. It includes e.g.

- data acquisition and storage

- digitisation of an analogous signal

- data compression

- data representation

- image restoration

- geometric transforms

- noise reduction

- deconvolution

- detail enhancing

- image analysis

- edge detection

- object recognition

- classification



Image representations

An image is usually stored as a matrix, each element of which correponds to one pixel.
Another possibility would be to store the coeddicients of a Fourier series. Both are spe-
cial cases of a general representation.

Let f be quadratically integrable function defined in some region S. We want to express
the function in terms of some basis functions φmn, m,n = 0, 1, . . .. The basis functions
are orthonormal, if

∫ ∫

S

φmn(x, y)φ
∗
rs(x, y) dx dy = δmrδns.



We are looking for an expansion
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This is satisfied when

amn =

∫ ∫

S

f(x, y)φ∗mn(x, y) dx dy.

The set of basis functions is complete, if for each quadratically integrable function the
error e→ 0, when the number of terms is increased.



Standard representations: Basis functions are rectangles:

φmn(x, y) =

{
√

MN
AB , jos x ∈ [mA

M , (m+1)A
M ) ja y ∈ [nBN , (n+1)B

N ),

0 muuten.
The coefficient amn is simply the mean value of f in the rectangle where φmn 6= 0.

Fourier representasion: Basis functions are

φmn(x, y) =
1√
AB

e2πi(mx/A+ny/B),

where A and B are the width and height of the image, respectively.

Optimal representation: Is there a basis that will make the error e2 as small as pos-
sible.

Minimising the error will lead to the eigenvalue problem
∫ ∫

Rff (x, x
′, y, y′)φm,n(x

′, y′) dx′ dy′ = γmnφmn(x, y).

The optimal basis functions, known as Karhunen and Loève functions, are obtained as
the solution of this equation.



Quantization

Intensities are continuous real values, which must be mapped to a finite number of gray
levels. Let the limiting intensities be zk, k = 1, 2, . . . ,K + 1. If the intensity is in the
range [zk, zk+1), the pixel will be given the value qk. If p(z) is the probability that the
intensity is z, the quantization error is

δ2q =
K
∑

k=1

∫ zk+1

zk

(z − qk)
2p(z) dz.



Minimising this we get

∂δ2q
∂zk

= (zk − qk−1)
2p(zk)− (zk − qk)

2p(zk) = 0, k = 2, 3, . . . ,K,

∂δ2q
∂qk

= −2

∫ zk+1

zk

(z − qk)p(z) dz = 0, k = 1, 2, . . . ,K.

or

zk =
qk−1 + qk

2
,

qk =

∫ zk+1

zk
zp(z) dz

∫ zk+1

zk
p(z) dz.

If p(z) is constant, the limits will be equally spaced.

In practice quantization is carried out directly by the hardware and the limits are equally
spaced even if the result may not be optimal.



Compression

Compression is needed to reduce storage space and also to speed up data transfer (impor-
tant e.g. in communication with a space probe).

Often neighbouring pixels are correlated, and space is wasted by storing data with low
information content.

There are many methods for compression:

- Transformation methods express the image as a combination of suitable basis func-
tions.

- Coding of gray levels can be changed to adapt to the nonrandomness of the distri-
bution (shorter codes are used for the most common values).

- Use some fractal process to represent the image.



Noiseless methods keep all information of the original image; the image can be reconst-
ructed exactly.

Noisy methods keep only the essential features; usually the smallest details are lost.

If the probability of gray level qi is pi, the information content of the image is

H = −
K
∑

i=1

pi log2 pi.

This gives a lower limit for the number of bits per pixel that are needed to reconstruct
the original image exactly. (Some methods may claim to give a very high compression
ratio, but the amount of compression is always limited by the information content.)

White noise (pixels not correlated at all) has the highest information content and cannot
be compressed.



Transformation compression: Express the image in terms of basis functions and keep
only the most important terms. Choosing the best base requires some information about
the images.

Karhunen and Loève transform (KL transform): If the image is expressed as a combina-
tion of the KL functions, the coefficients are independet. Finding the basis functions is
a laborious eigenvalue problem. If the autocorrelation function is assumed to be known,
expressions of the basis functions can be derived.

Fourier transform: Easy to calculate, but usually to obtain the same image quality
much more terms are needed than using the KL transform.



Hadamard transform: A very efficient transform; basis matrices contain only numbers
+1 and −1 (and a normalization constant). The basis matrices for an N ×N image, whe-
re N is a power of two, are

φ(u,v)(m,n) =
1

N
(−1)b(u,v,m,n),

where

b(u, v,m, n) =

log2 N−1
∑

k=0

(bk(u)bk(v) + bk(m)bk(n)),

and bk(x) is the k
th bit of the number x.

Run length coding: Pixels are replaced by pairs (v, n), where v is the value of the pixel
and n the number of successive pixels having the same value. If the image contains large
areas with the same colour, a lot of space is saved.

Huffman coding: Common values are represented by short codes and rare ones by lon-
ger codes.



Fractal coding: Natural objects rarely have simple geometric shapes, but have often a
selfsimilar structure (a magnified detail looks similar to the whole). Fractal comprssion
is based on iterated function systems (IFS, iterated function systems, ks. esim. Barnsley:
Fractals everywhere, Academic Press 1988.). IFS is a random walk at each point of which
one of a given set of transforms is selected with a certain probability. Computationally
heavy but can greatly compress complex images.



Wavelets

Wavelets can be used as a local analysis method. In a way wavelets split the data into
wave packets of different sizes.

Wavelets can be used in data compression e.g. in image processing.

Wavelets are functions of one variable and two indices:

gx =
1

√

|a|
g

(

x− b

a

)

, a 6= 0,

where g satisfies

C = 2π

∫ ∞

−∞
|ξ|−1|F (g)|dξ <∞,

where F (g) is the Fourier transform of g.

It follows from the definition that at the origin F (g) is zero and the mean value must be
∫ ∞

−∞
g(x)dx = 0.



Hence g must change sign somewhere and g(x) approaches zero when x approaches plus
or minus infinity.

The mother function ψ(t) can be used to generate a family of wavelets that can be scaled
and translated:

ψs,l(t) =
1

2s/2
ψ

(

t

2s
− l

)

Here s is the scale index and l position index.

The width of the wavelet depends only on the quantity

S = 2s,

which can in a way considered analogous to the frequence in the Fourier space.

The position index l has no corresponding quantity in the Fourier space. ψs,l(t) can be
chosen as an orthonormal family of functions. These properties make wavelets efficient
tools.



In the following we discuss only discrete wavelets and equally spaced data points. Assu-
me that there are 2N data points Xi, where N is an integer.

Now a wavelet transform can be defined as

W x
s,l =

N
∑

i=1

ψs,l(i)Xi,

W x
s,l is a measure of variations in the scale s at the location l. The index s = 0 can re-

fer either to the largest or smallest scale. If it refers to the smallest scale larger scales are
indicated by positive indices.

If the wavelets form an orthonormal set, also the inverse operation is available:

Xi =
∑

s,l

ψs,l(i)W
x
s,l.

Due to the locality of wavelets they can effectively detect sharp discontinuities and singu-
larities (Haar wavelets) or oscillations lasting a short time (Morelet wavelets).



Haar wavelet

The mother function is

ψ(t) =







1, 0 ≤ t < 1
2 t0

−1, 1
2 t0 ≤ t < t0

0, elsewhere.

In the smallest scale the wavelet is

hn =

{

h0 n = 1
−h0 n = 2
0 elsewhere.

The factor h0 = 1√
2
is a normalization constant. The wavelet of the next scale is twice as

long and the amplitude is 1√
2
-fold. Thus the ”power” in each wavelet is the same.

The Haar wavelets form an orthonormal set.



Daubechies wavelets

The wavelet D4 is

ψs,l(x) =
1

2s/2
ψ
( x

2s
− l
)

,

wher ψ(x) is the mother of D4:

ψ(x) = c1φ(2x)− c0φ(2x− 1)− c2φ(2x+ 1)− c3φ(2x+ 2),

and φ(x), teh father od D4 is defined as

φ(x) = c0φ(2x) + c1φ(2x− 1) + c2φ(2x− 2) + c3φ(2x− 3).

The coefficients ci are

c0 =
1

4
(1 +

√
3), c1 =

1

4
(3 +

√
3), c2 =

1

4
(3−

√
3), c3 =

1

4
(1−

√
3).





Morelet wavelet

ψs,l = exp

(

−ic
(

x− l

s

)

− 1

2

(

x− l

s

)2
)

.

If c is small the wave packet is wide but less sensitive to noise. A compromise could be
c = 2π. If we denote s = 1/ν, we can see a similarity to the Fourier transform:

ψs,l = e−i2πν(t−t0) · e− 1
2
ν(t−t0)

2

Mexican hat

ψ(x) = (1− x2)e−
1
2
x2

.

These do not form an orthonormal set and they do not have a proper mother wavelet.
They have been used widely because of their mathematical simplicity.



Image formats

eps (Encapsulated PostScript) Text, actually program code. Well suited for vector grap-
hics, not as good for pixel images. Resolution independent and freely scalable.

tif (Tagged Image format) Pixel image, not compressed, files are big.

gif (CompuServe graphics interchange format) Compressed noisefree image.

jpeg (Joint Photographic Experts Group file interchange format) Compressed noisy ima-
ge. Accuracy suffers a little, but savings in space are considerable.

mpeg (Motion Picture Experts Group file interchange format) Compression method for
motion pictures. The colour of a given pixel does not usually change between successive
frames. A lot of space is saved by storing only the changes.

pdf (Portable Document Format) Standard mainly for publications; much more compact
than eps.



The convert command in Linux can convert lots of image formats to other ones.

66146 Apr 15 13:40 fo\-rest.bmp ==>
524554 Apr 15 13:42 fo\-rest.tif
218378 Apr 15 13:41 fo\-rest.eps
75115 Apr 15 13:40 fo\-rest.gif
24881 Apr 15 13:43 fo\-rest.jpg

826 Dec 17 1997 co\-lor.ps ==>
2908547 Apr 15 13:59 co\-lor.tif
1454166 Apr 15 14:00 co\-lor.bmp
551223 Apr 15 14:01 co\-lor.gif
137581 Apr 15 14:17 co\-lor.eps
47422 Apr 15 13:59 co\-lor.jpg



Geometric transforms

A geometric transform maps a point (x, y) to another point (x′, y′). In vector graphics
points are usually expressed as column vectors with one additional element. Thus a point
(x, y) on a plane is given as

x =





x
y
1



 .

Then transforms can be expressed as 3× 3 matrices





x′

y′

1



 = M





x
y
1



 .



1) translation

M =





1 0 tx
0 1 ty
0 0 1



 .

2) scaling

M =





sx 0 0
0 sy 0
0 0 1



 .

3) rotation

M =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1



 .

These can be used for line drawings (vector graphics), NOT for pixel images.



Geometric transforms of pixel images

1) Direct transform:




x
y
1



→ M





x
y
1



 =





x′

y′

1



 .

Not good, because the mapping is not one-to-one:

- some pixels may not be assigned any value

- several pixels may get mapped to the same pixel

2) Inverse transform: for each (x′, y′) find a pixel (x, y) that will be mapped to (x′, y′)
and assign its value to the pixel (x′, y′). This is better, because will not leave any emp-
ty pixels. Still several pixels of the original image may be mapped to the same pixel, and
some to none.



3) Inverse interpolation: find (x, y) as before. Usually x and y are not integers; thus the
value corresponding to the point (x, y) is interpolated using the values of the nearest
neighboring pixels. This works quite well, particularly for moderatley continuous images.
Sharp edges may become slightly blurred.

4) Reconstruction: express the original image in terms of some functions, and use the
functions to calculate the values of the new pixels. Slow, but often gives the best results.



Deconvolution

Assume that the psf h is invarian w.r.t translations. The observed image p and the origi-
nal one f are then related by

p(x, y) =

∫ ∫

h(x− x′, y − y′)f(x′, y′) dx′ dy′ + ν(x, y),

In the least squares sense the optimal filter is the Wiener filter:

M(u, v) =
1

H(u, v)

|H(u, v)|2
|H(u, v)|2 + Sνν(u, v)/Sff (u, v)

.

If the noise is white noise, Sνν is constant and approximately

Sνν(0, 0) =

∫ ∞

−∞
Rνν(x, y) dx dy.

In practice, it is easiest just to experiment which value gives the most satisfactory result.



Another method is based on the concept of enthropy

Hf = −
∑

m

∑

n

f(m,n) ln f(m,n).

If the total energy

ftot =
∑

m

∑

n

f(m,n)

remains constant, the enthropy is the smaller the more the values f(m,n) vary.

Noise can also get negative values. Add a constant C to the noise so that ν(m,n) + C is
always positive:

Hν = −
∑

m

∑

n

(ν(m,n) + C) ln(ν(m,n) + C),

In the maximum enthropy method we maximize the expression

H = Hf + αHν ,

where α is a constant describing the amount of smoothing. In addition, two constraints
are needed:



1) The total energy ftot must be conserved.
2) The observed image p must be of the form

p(q, r) =
∑

m

∑

n

h(q −m, r − n)f(m,n) + ν(m,n),

i.e the convolution of the original image f and the psf h + noise. By solving this we get
f and ν.


