
Integral equations and inversion problems

Inverse problems

Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986.

Example: we observe an asteroid at opposition. Regardless of its rotation its brightness
does not vary with time. Thus we can assume that the projected area remains constant?
Does the asteroid have rotational symmetry?



Not necessarily; it could be e.g. a Reuleaux triangle:

Similar problems are very common in astronomy, since the observational geometry cannot
be changed.



Direct method: Construct a model, for the observed phenomenon e.g. by simulating it
on a computer. Calculate what kind of observations are obtained when the parameters
of the model are given certain values. Change the parameters until the calculated values
correspond to the observations.

Problem: is the solution unique?

Another problem: stability of the solution. Often we observe an integrated quantity that
is not strongly affected even by big changes of the parameter values. Even small errors in
observations may lead to very different values for the parameters.



Inverse method: The parameters describing the object are computed from the observa-
tions. Often difficult mathematically.

Observations often involve integration of the real quantity, which will destroy informa-
tion. (Even if we know that x + y = 1, we still have no idea about the numbers x and
y).

Integration is a smoothing operation, and the result is insensitive to small deviations in
the quantity being integrated. The inverse operation requires some kind of differentiation,
which will enhance noise. Therefore small observational errors may lead to large errors in
the model derived from the observations.



Integral equations

Integral equations contain an unknown function and its integral, e.g.

f(x) =

∫

f(t) sin(x+ t)dt.

The known function in the integral (here sin(x+ t) is the kernel of the equation.

Sometimes the equation can be converted to a differential equation.



Often the measured quantity g and the property to be determined f are related by an
equation

g(x) =

∫

b

a

K(x, t)f(t) dt.

This is Fredholm’s integral equation of the first kind. The equation of the second is

f(x) = g(x) + λ

∫

b

a

K(x, t)f(t) dt.

In these the limits of integration are fixed. If the integration range depends on x, we have
Volterra’s integral equations of the first and second kind.



If λ in the equation of the second kind is small, the functions f and g are almost iden-
tical, and the integral term describes a small perturbation. The equation can then be
solved by iteration. We can start by assuming e.g. f0 = g.

fk+1(x) = g(x) + λ

∫

K(x, t)fk(t) dt.

This method does not work if λ is big. Then the contribution of the original function is
small, and the smoothing effect of the integral will dominate. The equations approaches
an equation of the first kind.



Fredholm’s equations of the first kind are often hard to solve. In a discrete case such
equations can be written in a matrix form:

g = Hf .

For example, in image processing H is essentially a function describing the shape of
the image of a point source (PSF, point spread function). If the signal is passed unaf-
fected, H is an identity matrix. If the signal spreads out a little, H is a band matrix,
with nonzero elements in the diagonal and close to it. The more the signal is spread out,
the more nonzero elements there are in H and the smaller the diagonal elements become.

When the signal has completely spread out, all elements of the matrix H are roughly of
the same magnitude. Thus the matrix is nearly singular, and inverting it is a very un-
stable operation. This corresponds also to the physical interpretation of the situation:
signals are so badly spread out and mixed that the original image is hardly visible.



Example:
∫ 1

0

(x+ y)f(y) dy = x.

If we substitute a trial solution f(y) = ay + b, the lefthand side will be
(

1

2
a+ b

)

x+
1

3
a+

1

2
b.

Since this has to be identically x, we must take a = −6 and b = 4. Therefore the solution
of the equation is

f(y) = 4− 6y.

Let’s try to solve the equation numerically. Using the trapezoidal rule the integral is

h

2

[

(x)f(0) + 2(x+ h)f(h) + · · ·

+ 2(x+ (n− 1)h)f((n− 1)h) + (x+ 1)f(1)
]

.

The expression contains n+ 1 unknowns, namely the values of the function f : f(0), f(h),
. . ., f(1). The equation can be written separately for different values of x to get enough
equations to solve all these unknowns.



Let’s take h = 0.2; then there are six unknown values of the function. We’ll use the val-
ues 0, 0.2, . . ., 1 for x.

0.2

2

[

0 + 0.4f(0.2) + 0.8f(0.4) + 1.2f(0.6) + 1.6f(0.8) + f(1)
]

= 0,

· · ·

0.2

2

[

1 + 2.4f(0.2) + 2.8f(0.4) + 3.2f(0.6) + 3.6f(0.8) + 2f(1)
]

= 1

or in matrix form
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0 0.4 0.8 1.2 1.6 1.0
0.2 0.8 1.2 1.6 2.0 1.2
0.4 1.2 1.6 2.0 2.4 1.4
0.6 1.6 2.0 2.4 2.8 1.6
0.8 2.0 2.4 2.8 3.2 1.8
1.0 2.4 2.8 3.2 3.6 2.0





























f(0)
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f(0.4)
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0.2
0.4
0.6
0.8
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.

The coefficient matrix is nearly singular. The solution may have nothing to do with real-
ity.



Regularisation

A singular matrix means a situation in which information has been lost. There is no way
to recover the lost information, but we can try make the inversion of the matrix more
stable.

The idea of regularisation is to increase the dominance of the diagonal elements.

Let’s write the equation of the previous example as

λf(x) +

∫ 1

0

(x+ y)f(y) dy = x,

where the regularisation parameter λ is a positive constant. When this is discetised in



the same way as before, we get a set of euations

λf(0) +
0.2

2

[

0 + 0.4f(0.2) + 0.8f(0.4)+

1.2f(0.6) + 1.6f(0.8) + f(1)
]

= 0,

· · ·

λf(1) +
0.2

2

[

1 + 2.4f(0.2) + 2.8f(0.4)+

3.2f(0.6) + 3.6f(0.8) + 2f(1)] = 1.

The diagonal elements are now bigger depending on the parameter λ. The sensitivity to
errors (condition number) is smaller, and the equations can be solved without problems.

If λ is large, the new equation differs considerably from the original one; also its solution
is very different from the solution of the original equation.

Obviously there is some optimal value of the regularisation parameter λ, yielding a solu-
tion not too different from that of the original equation but leading to a problem that is
not yet too badly disturbed by the singularity of the matrix.



Solutions of the example corresponding to different values of λ:
λ cond(H) f(0) f(1)
0.05 43 9.1 -5.6
0.01 123 4.3 -2.1
0.005 242 4.0 -1.9
0.001 1200 3.8 -1.8

The best result is obtained when λ = 0.005. If the parameter is larger, the equation dif-
fers too much from the original one; if the parameter is smaller, the matrix begins to be-
come almost singular.



A possible solution is to convert the original problem to an optimisation problem. The
equation Hf = g may not have a solution at all, or the solution may be very sensitive
to observational errors. Yet we can always find such a solution f that will minimise the
norm

‖ Hf − g ‖ .

If the coefficient matrix is singular, the solution is not unambiguous. This problem can
be avoided by regularisation and minimising the norm

‖ Hf − g ‖2 +λ2 ‖ f ‖2 .

As a solution to this optimisation problem we’ll get both the vector f and the parameter
λ.


