
Sets of linear equations

Sets of linear equations are discussed in the school mathematics course, although there
they are not really needed; most examples look quite artificial.

In numerical analysis linear equations and more generally linear algebra, however, have
many applications. They are needed e.g. in the linear least squares method or when sol-
ving differential equations.

Gaussian elimination

The method learned at schooll is known as the Gaussian elimination. The equations are
transformed by eliminating unknowns. The elimination stage will eventually lead to an
equation with one unknown only. In the back substitution stage this value is substituted
to all other equations reducing the number of unknowns by one.

Elimination stage:

Subtract the first equation multiplied by suitable factors from the other ones in such a
way that the first unknown is eliminated from the other equations.

x + y + z = 1,

x − y − z = 2,

2x + y − z = 2.

Thus we get the equations
x + y + z = 1,

−2y − 2z = 1,

−y − 3z = 0.

We’ll repeat the same procedure for the last two equations. This will leave only one unk-
nown in the last equation:

x + y + z = 1,

−2y − 2z = 1,

−2z = −0.5.

Back substitution:

Last equation ⇒ z = 0.25.

Substitute this to the second equation: −2y − 0.5 = 1 ⇒ y = −0.75.

Substitute the values to the first equation: x − 0.5 = 1 ⇒ x = 1.5.

For programming the method is expressed formally in terms of matrices. At the elimina-
tion stage transform the matrix of coefficients to an upper triangular matrix having only
zeroes below the diagonal.

! Gaussian elimination
! elimination stage
do i=1,n-1
do k=i+1,n
c=A(k,i)/A(i,i)
do j=i,n
A(k,j)=A(k,j)-c*A(i,j)

end do
b(k) = b(k)-c*b(i)

end do
end do

Back substituion goes from bottom upwards:

! Gaussian elimination
! back substitution
do i=n,1,-1
x(i)=b(i)/A(i,i)
do k=i-1,1,-1
b(k)=b(k)-A(k,i)*x(i)

end do
end do

The coefficient matrix A is replaced by an upper triangular matrix; the original values are
overwritten.

At the back substituion stage the elements of the vector b below the line being processed
are not needed; thus the solution can be stored to the vector b.

! back substitution
! the solution is written to the constant vector
do i=n,1,-1
b(i)=b(i)/A(i,i)
do k=i-1,1,-1
b(k)=b(k)-A(k,i)*b(i)

end do
end do

If there are n equations, space is needed for n2 + n variables.

Elimination fails if the divisor is zero. Rearrange the equations so that the divisor is non-
zero. Reordering the equations does not change the solution.

Reordering of lines is called partial pivoting.

It is advantageous to find a line that will make the divisor as big as possible.

The program using partial pivoting is:

! Gaussian elimination
! elimination using partial pivoting
do i=1,n
! find the largest element on column i
m=i
s=A(i,i)
do k=i+1,n
if (abs(A(k,i)) > s) then
s=abs(A(k,i)); m=k

end if
end do

! the largest element is on line m

! exchange lines i and m
do l=i,n
x=A(i,l); A(i,l)=A(m,l); A(m,l)=x

end do
x=b(i); b(i)=b(m); b(m)=x

! eliminate element i
if (A(i,i)==0) then exit
do k=i+1,n
c=A(k,i)/A(i,i)
do j=i,n
A(k,j)=A(k,j)-c*A(i,j)

end do
b(k) = b(k)-c*b(i)

end do
end do

Complete pivoting: maximise the divisor by rearranging also columns. The order of
the unknowns will change; so extra bookkeeping is required so that the solution can be
arranges to correspond to the original set of equations.

In practice, it is not necessary to exchange the lines of the matrix. Instead we can use an
index vector that will tell the order of the lines. (The index jungle is now getting rather
dense ...)

! Gaussian elimination
...
! initialise the index vector
do i=1,n
ind(i)=i

end do

! elimination using partial pivoting
do i=1,n

! find the largest element on column i
m=i
s=A(ind(m),i)
do k=i+1,n
if (abs(A(ind(k),i)) > s) then
s=abs(A(ind(k),i)); m=k

end if
end do

! largest value on line m;
! exchange indices of lines i and m
l=ind(i); ind(i)=ind(m); ind(m)=l

! eliminate variable i
ii=ind(i)
if (abs(a(ii,i)) < limit) then exit
do k=i+1,n
kk=ind(k)
c=A(kk,i)/A(ii,i)
do j=i,n

A(kk,j)=A(kk,j)-c*A(ii,j)
end do
b(kk) = b(kk)-c*b(ii)

end do
end do

! back substitution
! solution will replace the constant vector
do i=n,1,-1
ii=ind(i)
b(ii)=b(ii)/A(ii,i)
do k=i-1,1,-1
kk=ind(kk)
b(kk)=b(kk)-A(kk,i)*b(ii)

end do
end do

! write the solution
do i=1,n
write (6,*) b(ind(i))

end do

Estimating execution time

The innermost j loop in algorithm 1 is executed n − i + 1 times; each time one multip-
lication and one subtraction is computed. The k loop is executed n − i times, and each
time the j loop + three other operations are execued. Thus the number of floating point
operations is

(3 + 2(n − i + 1))(n − i) = 2(n − i)2 + 5(n − i).

These are executed with the values of i running from 1 to n − 1. The total number of
operations is

N1 =
n−1
∑

i=1

[

2(n − i)2 + 5(n − i)
]

=
n−1
∑

i=1

[

2n2 + 5n + 2i2 − (4n + 5)i
]

= (n − 1)(2n2 + 5n) + 2

n−1
∑

i=1

i2 − (4n + 5)

n−1
∑

i=1

i.

The sum
∑

ip can be estimated by an integral:

n
∑

i=1

ip ≈

∫ n

0

ip di =
np+1

p + 1
.

Hence
∑n

i=1
i ∝ n2 and

∑n

i=1
i2 ∝ n3.

N1 ∝ n3.

In the back substitution (algorithm 2) the inner loop is executed i − 1 times, and each
time two operations are needed. This loop and one division are executed with the values
of i running from i to n.

N2 =

n
∑

i=1

(1 + 2(i − 1)) =

n
∑

i=1

(2i − 1) ∝ n2.

The total number of floating point operations is

N = N1 + N2 ∝ n3

If the number of operations in method 1 is N1 = 10n3 and in method 2 N2 = 1000n2, the
methods are equally efficient when n = 100. Because of its smaller exponent, in bigger
problems method 2 is better than method 1. The advantage will increase as the size of
the problem increases. But if n is almost always less than 100, it is better to use method
1, sinve obviously it is very simple and therefore efficient in small problems.

If the upper limit of the operations can be expressed as a polynomial of the problem size,
the problem can be solved in polynomial time.

If the time needed increases faster than any polynomial the problem is called NP comp-

lete. If the time dependence of even the most efficient method is e.g. exponential, the
problem is NP complete. There are many problems for which no algorithm is known that
will solve the problem in polynomial time. E.g. some combinatorial problems seem to be
NP complete.

LU decomposition

A disadvantage of the simple Gaussian eliminitoin is that the original matrix will disap-
pear. However, below the diagonal there is space that is not used.

The original matrix can be decomposed to a product of upper and lower triangular matri-
ces in several ways. These matrices can be stored in the space of the original matrix.

Here we will discuss the LU decomposition.

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

=

l11 0 . . . 0
l21 l22 . . . 0
...

...
. . .

...
ln1 ln2 . . . lnn

1 u12 . . . u1n

0 1 . . . u2n

...
...

. . .
...

0 0 . . . 1

.

Example. Let’s try to find a decomposition:

l11 0 0
l21 l22 0
l31 l32 l33

1 u12 u13

0 1 u23

0 0 1

 =

1 2 2
1 1 0
2 −1 1

Calculate the product of the triangular matrices:

l11 l11u12 l11u13

l21 l21u12 + l22 l21u13 + l22u23

l31 l31u12 + l32 l31u13 + l32u23 + l33

 .

The first column of the matrix L is exactly the same as in the original matrix:

l11 = a11 = 1,

l21 = a21 = 1,

l31 = a31 = 2.

The first line of the product matrix will give the equations

l11u12 = a12,

l11u13 = a13.

These contain l11 that has already been evaluated. Thus we can solve the elements of the
first line of U:

u12 = a12/l11 = 2/1 = 2,

u13 = a13/l11 = 2/1 = 2.

In the second column the following equations still remain:

l21u12 + l22 = a22,

l31u12 + l32 = a32.

Everything else is known except the elements of the second column of L.

l22 = a22 − l21u12 = 1 − 1 × 2 = −1,

l32 = a32 − l31u12 = −1 − 2 × 2 = −5.

Next, we’ll evaluate the second line:

l21u13 + l22u23 = a23.

This gives
u23 = (a23 − l21u13)/l22 = (0 − 1 × 2)/(−1) = 2.

Finally, the third column is

l31u13 + l32u23 + l33 = a33,

from which
l33 = a33 − l31u13 − l32u23 = 1 − 2 × 2 − (−5) × 2 = 7.

The decomposition is then

1 0 0
1 −1 0
2 −5 7

1 2 2
0 1 2
0 0 1

 .

The order of evaluation is essential. In finding the decomposition the columns of L and
lines of U alternate.

By inspecting the equations we notice that in order to compute the elements lij and uij

only the element aij of the original matrix is needed. Hence this element can be replaced
with the new evaluated value of lij or uij .

All other values needed to calculate lij and uij are previously evaluated elements of the
matrices L and U, stored already in place of the elements of the original matrix.

The decomposition can be stored in the form

1 2 2
1 −1 2
2 −5 7

 .

! LU decomposition of a matrix

! first column
do i=1,n
L(i,1)=A(i,1)

end do
! first line
U(1,1)=1
do j=2,n
U(1,j)=A(1,j)/L(1,1)

end do

! other columns and lines
do m=2,n
! column of L
do i=m,n
s=0.0
do k=1,m-1
s=s+L(i,k)*U(k,m)

end do
L(i,m)=A(i,m)-s

end do

! line of U
U(m,m)=1
do j=m+1,n
s=0.0
do k=1,m-1
s=s+L(m,k)*U(k,j)

end do
U(m,j)=(A(m,j)-s)/L(m,m)

end do
end do

In this we can replace L and U with A, in which case the original matrix will be overwrit-
ten by the decomposition.

In terms of the decomposition the equation Ax = b becomes

LUx = b.

This is equivalent to the equations
Ly = b,

Ux = y.

In both equations the coefficient matris is triangular, and to solve the equations only
back substitution is needed.

Begin by solving the vector y from
Ly = b.

l11 0 . . . 0
l21 l22 . . . 0
...

...
. . .

...
ln1 ln2 . . . lnn

y1

y2

...
yn

=

b1

b2

...
bn

,

which is equivalent to the equations

l11y1 = b1,

l21y1 + l22y2 = b2,

...

ln1y1 + ln2y2 + · · · + lnnyn = bn.

y1 = b1/l11,

y2 = (b2 − l21y1)/l22,

...

yn = (bn − ln1y1 − ln2y2 − · · · − ln,n−1yn−1)/lnn.

In computing yi the previous values bj , j < i, are no more needed, and we can write the
solution to the vector b.

Next solve the equation Ux=y:

1 u12 . . . u1n

0 1 . . . u2n

...
...

. . .
...

0 0 . . . 1

x1

x2

...
xn

=

y1

y2

...
yn

or
x1 + u12x2 + · · · + u1nxn = y1,

...

xn−1 + un−1,nxn = yn−1,

xn = yn.

xn = yn,

xn−1 = yn−1 − un−1,nxn,

...

x1 = y1 − u12x2 − · · · − u1nxn.

Again the values yi can be replaced by the solution.

Example

1 2 2
1 1 0
2 −1 1

x1

x2

x3

 =

1
2
0

 .

Using the previously found LU decomposition this is equivalent to the set of equations

1 0 0
1 −1 0
2 −5 7

1 2 2
0 1 2
0 0 1

x1

x2

x3

 =

1
2
0

 .

y1 = 1/1 = 1,

y2 = (2 − 1)/(−1) = −1,

y3 = (0 − 2 − 5)/7 = −1.

x3 = −1,

x2 = −1 + 2 = 1,

x1 = 1 − 2 + 2 = 1.

The decomposition method is handy if one has to solve several sets of equations with the
same coefficient matrix. The LU decomposition has to be evaluated only once.

One application is the calculation of the inverse matrix.

Determinant

detA = detLU = detLdetU.

L and U are triangular matrices. The determinant of a triangular matrix is simply the
product of the diagonal elements. The diagonal of U contains only ones; thus its determi-
nant is 1. Therefore, the determinant is simply

detA = l11l22 · · · lnn =

n
∏

i=1

lii.

Inverse matrix

The inverse matrix A−1 of A is a matrix satisfying the equation

AA−1 = A−1A = I.

There is no point in evaluating the inverse matrix unless it is really needed for something.

X is the required inverse matrix if
AX = I.

This is equivalent to the equations

Axi = ei, i = 1, . . . , n,

where xi is the column i of matrix X and ei is the column i of a unit matrix.

Thus the columns of the inverse matrix are found by solving n sets on linear equations
with the same coefficient matrix.

Iterative methods

Also sets of linear equations can be solved using iterative methods. The iteration can be
performed in many different ways.

1 How to find the initial value of the solution vector?

2 How to evaluate the next iterate?

3 How to update the solution vector (and possibly some other quantities)?

The equation Ax = b can always be written in an equivalent form

Mx = (M − A)x + b,

where M is an arbitrary matrix. If xi is the approximation obtained in iteration i, the
next iterate will be

Mxi+1 = (M − A)xi + b.

This is a set of linear equations, from which xi+1 has to be solved. Naturally the matrix
M must be such that it is essentially easier to solve this set than the original one.

The simplest case is to take M to be a unit matrix. The new iterate of the solution is
then just the vector on the right hand side.

If M is the diagonal of the original matrix A we get another very simple method, known
as Jacobi’s method.

The method will converge for all initial values if the diagonal of the coefficient matrix is
dominant:

|aii| >
∑

j 6=i

|aij |, i = 1, . . . , n.

program jacobi
! solving set of linear equations
! using Jacobi’s iteration
integer, parameter :: n=3
real, parameter :: epsilon = 0.00001
integer i, j, iter
real d, s, x(n), y(n), A(n,n), M(n), b(n)

A(1,:) = (/ 3, 1, 1 /)
A(2,:) = (/ 1, -3, -1 /)
A(3,:) = (/ 2, 1, -4 /)
b = (/1, 2, 2/)

! matrix M; only diagonal elements needed
do i=1,n
M(i)=A(i,i)

end do

! replace A by A-M
do i=1,n
A(i,i)=0

end do

! initial solution
x=0.0

! iterate until successive approximations
! x and y do not differ too much
d=1.0
iter=0
do while (d > epsilon)

! right hand side matrix of the iteration formula
do i=1,n
s=0.0
do j=1,n
s=s-A(i,j)*x(j)

end do
y(i) = (s+b(i))/M(i)

end do
! difference of successive iterates
d=0.0
do i=1,n
d=d+(x(i)-y(i))**2

end do

! update the solution vector
x=y

write (6,*) x, d

iter = iter+1
if (iter > 10) exit

end do
end

0.3333333 -0.6666667 -0.5000000 0.8055556
0.7222223 -0.3888889 -0.5000000 0.2283951
0.6296296 -0.2592592 -0.2361111 9.5014609E-02
0.4984568 -0.3780864 -0.2500000 3.1519126E-02
0.5426955 -0.4171811 -0.3452932 1.2566250E-02
0.5874915 -0.3706704 -0.3329476 4.3223356E-03
0.5678726 -0.3598537 -0.2989219 1.6596466E-03
0.5529252 -0.3777352 -0.3060271 5.9365941E-04
0.5612541 -0.3803492 -0.3179712 2.1886613E-04
0.5661068 -0.3735916 -0.3144603 8.1541584E-05
0.5626839 -0.3731443 -0.3103445 2.8855728E-05

Gauss–Seidel method

In Jacobi’s method the whole solution vector is computed using only the values found
in the previous iteration cycle. Often the convergence is faster if the components of the
solution vector are updated as soon as they have been calculated. This is known as the
Gauss–Seidel method.

Possible problems

Sensitivity to errors. The values in the set of equations may not be absolutely precise. If
the coefficient matrix is almost singular, even small errors of the coefficients can change
the solution cosiderably.

Scaling. Very small or very big numbers may appear as divisors changing the magnitude
of the coefficients considerably.

Convergence. In iterative methods one has to keep track of the convergence of the app-
roximations. It may be necessary to have some upper limit to the number of iteration
steps.

Over- and underflows. Floating point operations may produce a number that is too big
to be presented. Usually the problem can be avoided by proper scaling.

Example: Kahan’s equation:

(

1.2969 0.8648
0.2161 0.1441

) (

x
y

)(

0.8642
0.1440

)

.

If this is solved using 8 decimals, we find

x = 1.33317912, y = −1.0

The components of the residual
r = Ax − b

are of the order of 10−8, comparable to the procision of the calculations.

However, the correct solution is x = 2, y = −2!

Condition number

Sensitivity to errors is given by the condition number

cond(A) =‖ A ‖‖ A−1 ‖ .

When the equations are solved, the errors of the initial values will increase roughly by a
factor of cond(A).

An easily evaluated matrix norm is

‖ A ‖∞= max
i

∑

j

|aij |.

In Kahan’s equation we have

A =

(

1.2969 0.8648
0.2161 0.1441

)

A−1 = 108

(

0.1441 −0.8648
−0.2161 1.2969

)

‖ A ‖≈ 2 and ‖ A−1 ‖= 2 × 108, thus cond(A) ≈ 4 × 108.

This is a sign that the solution is very sensitive to errors.

