
Differential equations

Differential equation is an equation containing an unknown function y = y(x) and its
derivatives. The problem is to find y.

Many physical theories can be expressed in terms of differential equations: what happens
here or right now depends only on what happened in the nearest neighborhood or a short
time before.



If the unknown function depends only on one variable, the equation is an ordinary differ-

ential equation (ODE):

An object falling in a constant gravitational field:

d

dt
h(t) = −gt.

Here the height h is known at some initial time, e.g. h(0) = H, where H is a constant.
Such a problem is called an initial value problem.

Usually a unique solution exists.

The general solution of the previous equation is obtained by integration:

h(t) =

∫ t

0

−gtdt = −
gt2

2
+ C.

This gives a family of solutions. The initial value is needed to select a specific solution.



Uniformly loaded beam (like a bridge):

d2

dx2
w(x) = Aw(x) +Bx(x− L).

The displacement w must vanish at both ends of the bridge: w(0) = w(L) = 0. This is a
boundary value problem.

Usually more difficult to solve than the initial value problems.

Depending on the boundary values there may be a solution or no solution at all.



If the unknown function depends on several variables and the equation contains its par-
tial derivatives, we have a partial differential equation (PDE).

Hamiltonian equations of motion
dpi
dt

= −
∂H

∂qi
dqi
dt

=
∂H

∂pi

are initial value partial equations.

If the edges of a plate are kept in a certain temperature the heat flow in the plate is a
boundary value problem.



The highest derivative in the equation determines the order of the equation. For example,

y′ − xy = y′′

is of the second order.

The general solution of an equation of order n contains n integration constants that are
used to select a specific solution.



If the equation contains only linear combinations of the unknown function y and its
derivatives, the equation is linear:

y − 2y′ + y′′ = 0,

y + xy′ = ex.

Otherwise the equation is nonlinear:

yy′ = y′′,

y2 = y′.



If the coefficients of the unknown function and its derivatives are constants, the equation
is a constant coefficient differential equation.

There are analytical solution methods for first order equations and higher order linear
constant coefficient equations.

A solution of other kinds of equations may in some special cases be found e.g. by apply-
ing some integral transform (Laplace, Fourier, Hankel etc.)

Even if an analytical solution exists, it may be very complicated or difficult to find.



A linear constant coefficient equation

y′′ + ay′ + by = 0

can be solved using its characteristic equation

λ2 + aλ+ b = 0.

If the roots λ1 and λ2 are real and distinct, the solution is

y = C1e
λ1x + C2e

λ2x,

where the constant C1 and C2 are chosen so that the solution satisfies the initial condi-
tions.



The solution is a linear combination of two different linearly independent solutions.

If the roots are identical the solution is

y = C1e
λ1x + C2xe

λ1x,

Finally, if the roots are complex conjugates, the solution can be written in the form

y = C1e
ax cos bx+ C2e

bx sin bx,



(1) Numerical methods can usually be easily generalized to a set of several functions.

(2) Any equation of order n can always be replaced with a set of n first order equations
by taking the derivatives as new unknown functions.

For example, the equation
y′′ + xy′ − y = 0

is equivalent to the pair of equations

u = y′,

u′ + xu− y = 0.

From (1) and (2) it follows that it is sufficient to study solutions of first order equations
only.



Such an equation can always be expressed in the form

y′ = f(t,y(t)).

If, in addition, the value of the unknown function is known at one point, y(t0) = y0, the
problem is an initial value problem.

Lipschitz condition: an initial value problem has a unique continuously differentiable so-
lution in A ⊂ R×Rn, if there is a constant L such that for all (t, z1) ∈ A, (t, z2) ∈ A

‖ f(t, z1)− f(t, z2) ‖< L ‖ z1 − z2 ‖ .



Stability

The second order initial value problem

y′′ − 10y′ − 11y = 0,

y(0) = 1,

y′(0) = −1

has a solution y(x) = e−x. The solution will approach zero when x → ∞.

If the initial value is y(0) = 1 + a, the solution is

y(x) =

(

11

12
a+ 1

)

e−x +
a

12
e11x.

When x → ∞, the solution will increase beyond all limits however small a is.



The solution is unstable. Whatever method is used to solve the equations, even a small
rounding error may lead to a totally erroneous solution.

Such equations are called stiff.

Even a stable problem can be ill-conditioned (e.g. discretization may lead to a nearly sin-
gular set of linear equations.)



Let y1 and y2 be two solutions corresponding to two different initial values. The solution
is stable, if for all ǫ > 0 there is δ > 0 such that

|y1(t)− y2(t)| ≤ ǫ

for all t ≥ 0 always when
|y1(0)− y2(0)| ≤ δ.

Thus a small disturbance in the initial value has only a small effect on the solution.

A solution is asymptotically stable if

|y1(t)− y2(t)| → 0,

when t → ∞. Small disturbances in the initial values may first affect the solutions, but
further away the deviation will diminish and the solutions approach each others.

Especially nonlinear equations can be very sensitive to initial values and therefore be un-
stable (chaos).



The Duffing equation is an example of an equation that has badly behaving solutions:

y′′ + y + ry3 = a sinΩt,

where r, a and Ω are constants.

When r = 0, Ω = 1 and y(0) = y′(0) = 0 the solution is

y =
1

2
a sin t−

1

2
at cos t.

This is unstable and the amplitude approaches infinity (resonance).

When r 6= 0 the behaviour is difficult to predict. For suitable values of the constants the
solutions seems to show relatively stable oscillation but then suddenly jumps far away.



Initial value problems, single step methods

The value of the function (and its derivative) is known at one point. This value is used to
evaluate the function at the next point. Earlier values of the function are not used.

Let’s begin by trying to solve a differential equation using a Taylor series.

Assume that the equation is written as

y′(x) = f(x, y(x)),

where y is the function to be determined and f(x, y(x)) is some expression of x and y(x).

The function y can be expressed as a Taylor series

y(x) = y(x0) + y′(x0)(x− x0) +
1

2
y′′(x0)(x− x0)

2 + . . . .



As an example, take the equation

y′(x) = −2xy(x), y(0) = 1.

(The exact solution is y(x) = e−x2

.)

Since the function is known at x = 0, expand y as a series around zero. At x = h the
function has the value

y(h) = y(0) + y′(0)h+
1

2
y′′(0)h2 +

1

6
y′′′(0)h3 ++

1

2
y(4)(0)h4 + . . . .

Using the initial value y(0) = 1 and the original equation we get y′(0) = −2×0×y(0) = 0.
The higher derivatives in the expansion can be evaluated by differentiating the original
equations as many times as needed:

y′′ = −2y − 2xy′ = −2y + 4x2y,

y′′′ = −4y′ − 2xy′′ = 12xy − 8x3y,

y(4) = −6y′′ − 2xy′′′ = 12y − 48x2y + 16x3y.



At x = 0 we get the values
y′′(0) = −2

y′′′(0) = 0

y(4)(0) = +12

Substituting these into the series expansion we get

y(h) = 1− h2 + 2h4 + . . . .

When a finite number of terms is included we get a polynomial that gives an approximate
solution around zero. Using the polynomial we can find the value of the unknown func-
tion at x = h.

The accuracy of a truncated series expansion will become worse with increasing h.
Hence it is not usually sufficinet to give the whole solution. However, applying the same
method, we can find a new expansion at x = h; using the new expansion we can evaluate
the function at x = 2h.



Idea: find some approximation for the function to be determined, and use it to extrapo-
late the function a small step further. By repeating this sufficiently many times the val-
ues of the function can be evaluated for an arbitrary range,

h is the step length of the method. The step has to be short enough to avoid large errors
in the extrapolation.

Taylor series is practical only if analytical expressions of the derivatives can be easily ob-
tained.



Solution of the example problem with the Taylor series method and two different steps,
h = 0.2 and h = 0.1.

x y y e−x2

0.00 1.00000 1.00000 1.00000
0.10 0.99050 0.99005
0.20 0.96400 0.96166 0.96079
0.30 0.91512 0.91393
0.40 0.85765 0.85352 0.85214
0.50 0.78022 0.77880
0.60 0.70336 0.69898 0.69768
0.70 0.61369 0.61263
0.80 0.53105 0.52803 0.52729
0.90 0.44524 0.44486
1.00 0.36881 0.36792 0.36788



The function was approximated with a Taylor series omitting all terms proportional to h5

and higher powers. Thus the error in one step is of the order of h5. This is the local error

of the method.

The order of the method is 4, which is often denoted as O(h5).

In each step the error can increase by an amount that is of the order h5. At the end of
the whole interval the accumulated error is 1/h × h5 = h4. This is the global error of the
solution.



Euler’s method

A very simple method is obtained when the step is chosen so short that already the two
first terms of the Taylor series give a satisfactory approximation.

The method is not very accurate, so it is not recommended. However, it illustrates basic
ideas that are used in more advanced methods.

When the function and its derivative at x are known, their values at x + h are obtained
from

y(x+ h) = y(x) + hy′(x),

y′(x+ h) = f(x+ h, y(x+ h)).

program euler
! Solve the differential equation y’=f(x,y)
! with initial value y(a)=y0
! in the range a <= x <= b
! test with y’=-xy, the solution of which
! is y=exp(-x**2/2)
implicit none



call euler1(0.0, 1.0, 1.0, 0.1)
contains

real function f(x, y)
real, intent(in) :: x, y
f = -x*y

end function

subroutine euler1 (a, b, y0, h)
real, intent(in) :: a, b, y0, h
real :: x, y, dy, e
x=a
y=y0
dy=f(x,y)
e=exp(-x**2/2); e=abs((e-y)/e)
write(*,’(4F10.6)’) x,y,dy,e

do while (x < b)
x=x+h
y=y+h*dy
dy=f(x,y)
e=exp(-x**2/2); e=abs((e-y)/e)



write(*,’(4F10.6)’) x,y,dy,e
end do

end subroutine
end program

x y y’ rel.error

0.000000 1.000000 0.000000 0.000000
0.100000 1.000000 -0.100000 0.005013
0.200000 0.990000 -0.198000 0.009999
0.300000 0.970200 -0.291060 0.014856
0.400000 0.941094 -0.376438 0.019475
0.500000 0.903450 -0.451725 0.023743
0.600000 0.858278 -0.514967 0.027545
0.700000 0.806781 -0.564747 0.030761
0.800000 0.750306 -0.600245 0.033268
0.900000 0.690282 -0.621254 0.034941
1.000000 0.628156 -0.628156 0.035655



Usually the step has to be very short to get satisfactory accuracy.

Let Y be the exact solution. The error of Euler’s method at x+ h is

d = Y (x+ h)− y(x+ h)

= Y (x)− y(x) + h[f(x, Y (x))− f(x, y(x))] + h2Y ′′(z)/2,

where x < z < x+ h.

If Y (x) = y(x) (i.e the solution is exact at x), after one step the error is h2Y ′′(z)/2. The
local error of the method is of the second order as a function of the step size (O(h2));
thus it is a first order method.



In general, if the local error is O(hn+1) the method is of the order n.

The total error after each integration step depends on the error accumulated this far +
the local error in the next step.

The total error of Euler’s method is

d = Y (x)− y(x) + hfy(x, ξ)(Y (x)− y(x)) + h2Y ′′

= (1 + hfy)(Y (x)− y(x)) + h2Y ′′

= (1 + hfy)[total error at x]+

[local error at x+ h].

Euler’s method is stable, if |1 + hfy| < 1. The method is stable only if the step is short
enough.

In the case of a set of equations the stability criterion of Euler’s method is |1 + hλ1| <
1, where λ1 is the largest eigenvalue of the coefficient matrix (Jacobian matrix). Even a
stable set of equations may be difficult to solve. If the real parts of the eigenvalues of the
coefficient matrix have very different magnitudes, the set of equations is stiff.



Example:
y′ = −2000y + 999.75u+ 1000.25,

u′ = y − u,

y(0) = 0, u(0) = −2.

A =

(

−2000 999.75
1 −1

)

.

The eigenvalues are −2000.5 and −0.5 and the exact solution

y = −1.499875e−0.5x + 0.499875e−2000.5x + 1,

u = −2.99975e−0.5x − 0.00025e−2000.5x + 1.

In each of these the second term has noticeable effect only at very small values of x. Near
the origin, an extremely short step length is needed, although the first term varies only
very slowly.



Leapfrog

Particularly dynamical systems are described by equations like

d2x

dt2
= F (x).

In the leapfrog method the positions x and velocities v are updated alternatingly:

xi = xi−1 + vi−1/2∆t

ai = F (xi)

vi+1/2 = vi−1/2 + ai∆t

Another version is:
ai = F (xi)

xi+1 = xi + vi∆t+
1

2
ai(∆t)2

vi+1 = vi +
1

2
(ai + ai+1)∆t



The method is stable also for periodic motion if the time step is constant and ∆t ≤ 2/ω,
where ω is the frequency.

The method is simple (and fast) and the energy of the system is conserved, which makes
it accurate.



Implicit Euler’s method

Euler’s method is an explicit method : all values needed to calculate the next point are
known in advance.

In Euler’s method the derivative is evaluated at the beginning of each subinterval and
used to estimate the slope of the function in the whole subinterval. The result is correct
only if the function is a straight line. If the graph of the function is curved, it would be
better to use the mean value of the derivative. It could be estimated by e.g.

ȳ′ =
y′(x) + y′(x+ h)

2
.

Here the value y′(x + h) = f(x + h, y(x + h)) is not known in advance, Thus this is a
implicit method .



The unknown derivative can be estimeted using the original Euler’s method:

y(x+ h) = y(x) + hy′(x),

y′(x+ h) = f(x+ h, y(x+ h)),

y(x+ h) = y(x) +
h

2
(y′(x) + y′(x+ h)).

This iteration could even be repeated by using the corrected y to calculate a more accu-
rate value for the derivative, and then again a new y.

Implicit methods are often more stable than explicit methods.

Idea of a predictor-corrector method: Using the values known at the current point find
an approximate value (predictor) of the function at the next point. Using the prediction
find an improved value (corrector).



Runge–Kutta method

As an example, we’ll derive the second order Runge–Kutta method. Let the equation be

y′ = f(x, y),

whence

y′′ = f ′ = fx + fy
dy

dx
= fx + fyf.

The Taylor series gives the estimate

yn+1 = yn + hy′ +
h2

2
y′′ = yn + hf +

h2

2
f ′

= yn + hf + h2(
1

2
fx +

1

2
fyf).

Denote
k1 = hf(xn, yn),

k2 = hf(xn + αh, yn + βk1).

Because f = y′, k1 and k2 are estimates of the change of y when x increases by h.



The actual change is expressed as a linear combination of these:

yn+1 = yn + ak1 + bk2

= yn + ahf + bhf(xn + αh, yn + βhf)

≈ yn + ahf + bh [f + αhfx + βhfyf ]

= yn + (a+ b)hf + h2(αbfx + βbfyf).

Comparing this with the Taylor series we get a set of equations

a+ b = 1,

αb =
1

2
,

βb =
1

2
.



This is satisfied, if we choose, for example, a = b = 1/2, α = β = 1, which gives

k1 = hf(xn, yn),

k2 = hf(xn + h, yn + k1) = hf(xn + h, yn + hf(xn, yn)),

yn+1 = yn + k1/2 + k2/2 = yn +
h

2
(f(xn, yn) + f(xn + h, yn + hf(xn, yn))

i.e. we end up with the implict Euler’s method.



The fourth order Runge–Kutta is a frequently used method. Its derivation is rather labo-
rious. It involves a set of 11 equations with 13 unknowns.

The most common method is:

k1 = hf(xn, yn),

k2 = hf(xn +
1

2
h, yn +

1

2
k1),

k3 = hf(xn +
1

2
h, yn +

1

2
k2),

k4 = hf(xn + h, yn + k3),

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4).

The global error of this is of the order h4.



Example: The second order equation

y′′ + y = 0

can be written as a pair of equations

y′ = u

u′ = −y.

The analytic solution with the initial values y(0) = 0, y′(0) = 1 is y = sinx.



The solution using the Runge–Kutta method is essentially as

h=0.1
x=0.0; y= 0.0 ; u= 1.0
do while (x <= 1.0)
ky1 = h * u
ku1 = h * (-y)
ky2 = h * (u+ku1/2)
ku2 = h * (-(y+ky1/2))
ky3 = h * (u+ku2/2)
ku3 = h * (-(y+ky2/2))
ky4 = h * (u+ku3)
ku4 = h * (-(y+ky3))
y = y + (ky1 + 2*ky2 + 2*ky3 + ky4)/6.0
u = u + (ku1 + 2*ku2 + 2*ku3 + ku4)/6.0
x = x+h
write(*,*) x,y

end do



The output of the program is (the rightmost column gives the true value):

0.1000000 9.9833339E-02 9.9833421E-02
0.2000000 0.1986692 0.1986693
0.3000000 0.2955200 0.2955202
0.4000000 0.3894180 0.3894183
0.5000000 0.4794252 0.4794255
0.6000000 0.5646421 0.5646425
0.7000000 0.6442173 0.6442177
0.8000001 0.7173556 0.7173561
0.9000001 0.7833264 0.7833270
1.000000 0.8414705 0.8414711



The accuracy can be tested by a method called step doubling. Proceed from x to x + 2h
by taking one step of 2h to get y1 and two steps of h to get y2. If the exact solution is
y(x+ 2h), we get

y(x+ 2h) = y1 + (2h)5C...

y(x+ 2h) = y2 + 2(h)5C...,

where C is a constant within the step. The difference

∆ = y2 − y1

is an indicator of the truncation error. It is proportional to h5.

If ∆0 is the desired accuracy, the step size h0 should have been

h0 = h

∣

∣

∣

∣

∆0

∆

∣

∣

∣

∣

1/5

.

If ∆ > ∆0, the step size must be reduced to obtain the required accuracy.

If ∆ < ∆0, the step size can be lengthened to fasten calculations.



The fourth order RK requires four evaluations of the derivative function f . In higher or-
der methods the number of derivative evaluations is higher than the order, and they be-
come progressively slower.



Bulirsch–Stoer method

See Stoer, Bulirsch: Introductio to Numerical Analysis, Springer 1980.

A brief summary in Numerical Recipes.

(1) Use a modified midpoint method to integrate from x to x + H using n substeps of
length h = H/n:

z0 = y(x)

z1 = z0 + hf ′(x, z0),

...

zm+1 = zm−1 + 2hf ′(x+mh, zm), m = 1, 2, ..., n− 1

y(x+H) ≈ yn =
1

2
[zn + zn−1 + hf ′(x+H, zn)]

It can be shown that the errot expressed as a power series of h contains only even powers
of h. Combining results of different order to remove error terms gains two orders at a
time.



(2) An idea similar to the Romberg integration: Integrate over a relatively long interval
using different step sizes h.

(3) Express the result as a rational function of the step size, R(h), and extrapolate to
h = 0.

A suitable sequence of subdivisions is e.g.

n = 2, 4, 6, 8, 12, 16, 24, 32, ..., ni = 2ni−2



Multistep methods

Single step methods do not utilize values computed earlier.

In multistep methods several previous points are used to extrapolate the solution further.

Step size can be longer; thus the methods are faster.

Initial values are usually known at one point only. Therefore, a few points must be first
calculated using some single step method, like Runge-Kutta. Another possibility is to
iterate the solution at the initial polints until it satisfies the equation.

In single step methods each step is independent from the previous ones. Hence the step
size can be easily changed, as necessary. In multistep methods changing the step size is
more complicated; a new set of initial points must be calculated.



Milne’s method

Assume we know the function at four points, xn−3, xn−2, xn−1 and xn (calculated e.g.
by RK or Taylor series).

Write the equation as
dy = f(x, y) dx

and integrate one step further using a second degree polynomial to describe the function
in the range xn−2 to xn:

∫ xn+1

xn−3

f(x, y)dx =

∫ xn+1

xn−3

P2(x)dx,

which gives

yn+1 − yn−3 =
4h

3
(2fn − fn−1 + 2fn−2).

This is used to predict fn+1.



An improved value is obtained from

∫ xn+1

xn−1

f(x, y)dx =

∫ xn+1

xn−1

P2(x)dx,

where P2 is now a polynomial determined at the points xn−1, xn and xn+1. Thus we get

yn+1,c − yn−3 =
h

3
(2fn+1 − 4fn + fn−1).

The method is simple and the local error is O(h5).

However, the method sometimes suffers from instability, and then reducing the step size
does not help.

In general, the method cannot be recommended, but it can be used with appropriate cau-
tion.



Adams’ method

Write the equation again as
dy = f(x, y) dx

and integrate over one step

∫ xn+1

xn

dy = yn+1 − yn =

∫ xn+1

xn

f(x, y) dx.



Replace f(x, y) by an interpolation polynomial (now we have to use a polynomial based
on backward differences):

yn+1 − yn ≈

∫ xn+1

xn

(

fn + s∆fn−1 +
(s+ 1)s

2
∆2fn−2

)

dx

=

∫ s=1

s=0

(

fn + s∆fn−1 +
(s+ 1)s

2
∆2fn−2

)

h ds

= h(fn +
1

2
∆fn−1 +

5

12
∆2fn−2)

= h

(

fn +
fn − fn−1

2
+

5(fn − 2fn−1 + fn−2)

12

)

=
h

12
(23fn − 16fn−1 + 5fn−2).

Thus the integration step is

yn+1 = yn +
h

12
(23fn − 16fn−1 + 5fn−2).

The local error is Oh4 and global error Oh3.



Let’s solve our example equation y′′ + y = 0 using Adams method:

! initial values; we’ll cheat and assume
! they are known
! these should be determined using
! some single step method
g2 = cos(0)
g1 = cos(0.1)
g0 = cos(0.2)
f2 = -sin(0)
f1 = -sin(0.1)
f0 = -sin(0.2)
h = 0.1
x = 0.2
y = sin(0.2)
u = cos(0.2)



! the actual integration loop
do while (x <=2.0)
y = y + h/12*(23*g0-16*g1+5*g2)
u = u + h/12*(23*f0-16*f1+5*f2)

g2=g1; g1=g0; g0=u
f2=f1; f1=f0; f0=-y
x = x+h
write(*,*) x,y,u

end do

x y y (exact) u y’(exact)
0.3000000 0.2955149 0.2955202 0.9552994 0.9553365
0.4000000 0.3893969 0.3894183 0.9209886 0.9210610
0.5000000 0.4793826 0.4794255 0.8774783 0.8775826
0.6000000 0.5645716 0.5646425 0.8252031 0.8253356
0.7000000 0.6441129 0.6442177 0.7646864 0.7648422
0.8000001 0.7172123 0.7173561 0.6965334 0.6967067
0.9000001 0.7831398 0.7833270 0.6214256 0.6216099
1.000000 0.8412372 0.8414711 0.5401140 0.5403022



The previous method is one of the more general Adams-Bashforth methods. Some other
methods of this type are e.g.

yn+1 = yn + hfn,

yn+1 = yn +
h

2
(3fn − fn−1),

yn+1 = yn +
h

12
(23fn − 16fn−1 + 5fn−2),

yn+1 = yn +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3),

These are explicit methods.

Implicit methods contain an equation

yn+1 = yn + g + βhf(xn+1, yn+1),

where g depends only on the previous values of x and y. The function f appearing here
may be of such a form that an analytical expression for yn+1 cannot be obtained, but it
has to be solved by some iterative method.



Adams-Moulton methods are implicit methods:

yn+1 = yn + hfn+1,

yn+1 = yn +
h

2
(fn+1 + fn),

yn+1 = yn +
h

12
(5fn+1 + 8fn − fn−1),

yn+1 = yn +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2),



Implicit methods are more stable than explicit methods.

Explicit and implicit methods can be combined to avoid solving an equation.

Use a Adams-Bashforth method as a predictor and a Adams-Moulton method as a cor-
rector. For example

yn+1 = yn +
h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3)

yn+1 = yn +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2).



Solve the example equation using an Adams predictor-corrector method

do while (x <=1.0)
! predictor
y1 = y + h/12*(23*g0-16*g1+5*g2)
u1 = u + h/12*(23*f0-16*f1+5*f2)

g2=g1; g1=g0; g0=u1
f2=f1; f1=f0; f0=-y1

! corrector
y2 = y +h/12*(5*g0+8*g1-g2)
u2 = u +h/12*(5*f0+8*f1-f2)

u = u2 ; y = y2 ;
x = x+h
write(*,*) x,y,u

end do



x y y (exact) u y’(exact)
0.3000000 0.2955195 0.2955202 0.9553408 0.9553365
0.4000000 0.3894152 0.3894183 0.9210703 0.9210610
0.5000000 0.4794213 0.4794255 0.8775975 0.8775826
0.6000000 0.5646383 0.5646425 0.8253561 0.8253356
0.7000000 0.6442145 0.6442177 0.7648684 0.7648422
0.8000001 0.7173551 0.7173561 0.6967387 0.6967067
0.9000001 0.7833292 0.7833270 0.6216474 0.6216099
1.000000 0.8414777 0.8414711 0.5403448 0.5403022



Backward multistep methods

In these methods the derivative is evaluated at one point only. This will reduce the in-
creasing effect of f on errors. The methods are very stable, and good for stiff problems.

yn+1 = yn + hfn+1,

yn+1 =
4

3
yn −

1

3
yn−1 +

2h

3
fn+1,

yn+1 =
18

11
yn −

9

11
yn−1 +

2

11
yn−2 +

6h

11
fn+1,

yn+1 =
48

25
yn −

36

25
yn−1 +

16

25
yn−2 −

3

25
yn−3 +

12h

25
fn+1,

The first one is just the implicit Euler’s method.



Potential problems

Some equations are inherently unstable and difficult to solve, independently of the
method.

A method can be stable or unstable depending on the equation and step size.

The step size must be short enough. Too long a step may make the method unstable.

But: a very short step slows down the computation and may lead to accumulation of
round-off errors.

A good check is to recalculate the solution using a step that is half of the original. If the
values are almost the same, the solution is probably close to the correct one. If the val-
ues differ considerably, either the step is too long, or there are some other problems that
must be found out.



Potential singularities: For example, the gravitational force increases with diminishing
distance and becomes infinite. When objects approach each others the time step must be
decreased. (E.g. the orbit of a comet far away from other objects is almost a straight line
and motion very slow allowing a long time step, but close to the Sun the time step must
be very short.)

Easy to correct in single-step methods. In multi-step methods new initial values must be
calculated when the step size is changed.

The problem can be removed (at least partly) by regularization, i.e. suitable transforma-
tions of time and geometry.



Differential equations—boundary value
problems

The values of the unknown function are known at both ends of the interval. For example,
in a stellar model the mass distribution has the boundary values M(0) = 0, M(R) = m,
where M(r) is the mass inside radius r and m is the total mass of the star.

An initial value problem has usually a unique solution, if the functions involved are
smooth enough.

A boundary value problem may not have a solution at all, or there may be an infinite
number of solutions.



Shooting method

Assume the values of the function to be determined are known at both ends of the in-
terval, but its derivatives are unknown. To use the methods for solving an initial value
problem the derivative should be known at the starting point. Try different values of the
derivative until the solution passes through the endpoint.

Consider the equation

y′′ = f(x, y, y′), y(a) = α, y(b) = β.

Convert this to an initial value problem

y′′ = f(x, y, y′), y(a) = α, y′(a) = k.



The solution depends on the shooting angle k:

y = y(x; k).

Thus the value of k must be solved from

y(b; k) = β.

In principle this is an equation that can be solved using any numerical method. Evalua-
tion of the function requires now finding one particular solution of the differential equa-
tion.

Begin by finding two solutions corresponding to k = k0 and k1. Then improve the solu-
tion e.g. by the secant method:

k2 = k1 − (y(b; k1)− β)
k1 − k0

y(b; k1)− y(b; k0)
,



Example: Solve the equation y′′ + y = 0 with the boundary conditions y(0) = 1, y(1) = 1.
(The exact solution is 0.5463 sinx+ cosx.)

We can use e.g. the 4. order Runge-Kutta.

Try first y′(0) = k0 = 0:

0.100000 0.995004
0.200000 0.980067

...
0.800000 0.696707
0.900000 0.621611
1.000000 0.540303

Another trial y′(0) = k1 = 1:

0.100000 1.094837
0.200000 1.178736
...

0.800000 1.414063
0.900000 1.404937
1.000000 1.381773



An improved value of the slope:

y′(0) = k2 = 1− (1.381773− 1)
1− 0

1.381773− 0.540303
= 0.5463.

Solution with the new initial value y′(0) = k2 = 0.5463:

0.100000 1.049543
0.200000 1.088600
...

0.800000 1.088599
0.900000 1.049542
1.000000 0.999998

The accuracy is no coincidence. The solution of a second order linear boundary value
problem is always obtained in this way from two different solutions.

In linear problems a linear combination of solutions is also a solution satisfying the equa-
tion. Thus it is possible the find the actual solution by combining several trial solutions.

Not true for nonlinear problems, which usually require several iterations.



Try to solve the nonlinear equation

yy′ = −e−2x

with the boundary conditions y(0) = 1, y(1) = 1/e. The actual solution is y(x) = e−x and
thus we should have y′(0) = −1

In this case h = 0.1 and the implicit Euler method gave

h x y
-1.500 1.000 0.353
-1.400 1.000 0.365
-1.300 1.000 0.377
-1.200 1.000 0.388
-1.100 1.000 0.399
-1.000 1.000 0.410
-0.900 1.000 0.421
-0.800 1.000 0.431
-0.700 1.000 0.442
-0.600 1.000 0.452
-0.500 1.000 0.462
-0.400 1.000 0.472



Only when the step was reduced to h = 0.001 we get close to the real solution. However,
now the final value is not very sensitive to the derivative:

-1.500 1.000 0.368
-1.400 1.000 0.368
-1.300 1.000 0.368
-1.200 1.000 0.368
-1.100 1.000 0.368
-1.000 1.000 0.368
-0.900 1.000 0.369
-0.800 1.000 0.369
-0.700 1.000 0.369
-0.600 1.000 0.369
-0.500 1.000 0.369
-0.400 1.000 0.369
-0.300 1.000 0.369
-0.200 1.000 0.370
-0.100 1.000 0.370
0.000 1.000 0.370



Difference method

Replace derivatives by finite differences:

y′(xi) ≈
yi+1 − yi−1

2h
,

y′′(xi) ≈
yi+1 − 2yi + yi−1

h2
.

Example: equation y′′ + y = 0:

yi+1 − 2yi + yi−1

h2
+ yi = 0

or

yi−1 + (h2 − 2)yi + yi+1 = 0.

In addition, boundary values give

y0 = 1, yn = 1.



If the step is h = 0.25, we obtain equations

y0 = 1,

y0 − 1.9375y1 + y2 = 0,

y1 − 1.9375y2 + y3 = 0,

y2 − 1.9375y3 + y4 = 0,

y4 = 1

or










1 0 0 0 0
1 −1.9375 1 0 0
0 1 −1.9375 1 0
0 0 1 −1.9375 1
0 0 0 0 1





















y0
y1
y2
y3
y4











=











1
0
0
0
1











.



The solution of the set of equations is

x y y(exact)
0.0000 1.0000 1.0000
0.2500 1.1047 1.1041
0.5000 1.1403 1.1395
0.7500 1.1047 1.1041
1.0000 1.0000 1.0000

0 0.5 1
1.0

1.3

A linear differential equation is replaced by a set of linear equations; the coefficient ma-
tris is a band matrix, like the tridiagonal matrix above. Space can be saved by storing
the nonzero elements only.



Usually a normal Gaussian elimination can be used. In a tridiagonal system each variable
is eliminated from two equations; thus the time is ∝ n.

If higher order differences are used the matrix will still be a band matrix.

If the step is short, the number of equations can be very big, possibly resulting in accu-
mulation of rounding errors.

If the matrix is diagonally dominant, iterative methods (Gauss–Seidel or Gauss–Jordan)
can be faster and more stable than the elimination method.

Accuracy can be improved by

- Using shorter steps

- Using higher order approximations for derivatives; this means bigger bandwidth of
the matrix. Also, the equations will contain points outside the original interval.



If the original equation is nonlinear, also the resulting set of equations will be nonlinear.
It may be possible to solve them by iteration.

Finding a good initial value leading to a convergent solution may be difficult.

If a converging solution is difficult to fkind, the shooting method should be used.



Boundary values may also include derivatives.

Example: equation y′′ + y = 0, boundary values y′(0) = 0, y′(1) = 0.5. (The exact
solution is y = −0.5942 cosx, and y(1) = −0.3210.)

If the step is h = 0.25, we get the equations

y−1 − 1.9375y0 + y1 = 0,

y0 − 1.9375y1 + y2 = 0,

y1 − 1.9375y2 + y3 = 0,

y2 − 1.9375y3 + y4 = 0,

y3 − 1.9375y4 + y5 = 0,

y−1 and y5 are outside the interval.

Boundary values give also the equations

y′(0) =
y1 − y−1

0.5
= 0,

y′(1) =
y5 − y3
0.5

= 0.5,





















−1 0 1 0 0 0 0
1 −1.9375 1 0 0 0 0
0 1 −1.9375 1 0 0 0
0 0 1 −1.9375 1 0 0
0 0 0 1 −1.9375 1 0
0 0 0 0 1 −1.9375 1
0 0 0 0 −2 0 2





































y−1

y0
y1
y2
y3
y4
y5



















=



















0
0
0
0
0
0
0.5



















.

The solution is

y =



















−0.5792
−0.5979
−0.5792
−0.5243
−0.4367
−0.3217
−0.1867



















.



Galerkin’s method

The solution can also be sought in terms of some basis functions φi, i = 1, ..., N :

y(x) =

N
∑

i=1

ciφi(x).

If the equation is of the form

y′′ = f(x, y, y′)

it will become

N
∑

i=1

ciφ
′′

i (xj) = f

(

xj ,

N
∑

i=1

ciφi(xj),

N
∑

i=1

ciφ
′

i(xj)

)

, j = 1, ..., N



and the boundary values give

y(a) =
N
∑

i=1

ciφi(a) = α

y(b) =

N
∑

i=1

ciφi(b) = β

These equations are used to determine the coefficients ci.

The basis functions can be anything, but they should be chosen in a suitable way for the
problem.



Differential equations—characteristic value
problems

Problems concerning vibrations of strings or membranes as well as solving the Schrödinger
equation are a special form of boundary value problems.

Consider the equation
d2y

dx2
+ k2y = 0, y(0) = y(1) = 0,

where k is a constant.

The general solution is of the form

y = a sin kx+ b cos kx,

where a and b are the two constants needed for the solution of the second order equation.



Since y(0) = 0, the initial value requires that b = 0.

At x = 1 we must have y = a sin kx = 0.

This is satisfied if a = 0. A homogeneous equation like this always has the trivial solution

y = 0, which is not very interesting. A nontrivial solution requires that sin k = 0, Thus
the solution is

y = a sinnπx, n = 1, 2, ...

The constant a can have any value whatsoever without violating the boundary condi-
tions.

The equation has a solution only for certain characteristic values or eigenvalues of the
parameter k. An eigenfunction of the equation is a solution corresponding to a certain
eigenvalue.



We can discretize the equation as

1

h2
(yi+ − 2yi + yi−1) + k2yi = 0.

If we take h = 0.3, we have for the interior points

y1 − (2− 0.04k2)y2 + y3 = 0

y2 − (2− 0.04k2)y3 + y4 = 0

y3 − (2− 0.04k2)y4 + y5 = 0

y4 − (2− 0.04k2)y5 + y6 = 0

The boundary conditions require y1 = y6 = 0. Thus we get







2− 0.04k2 −1 0 0
−1 2− 0.04k2 −1 0
0 −1 2− 0.04k2 −1
0 0 −1 2− 0.04k2













y2
y3
y4
y5






= 0.

This set of equations has a nontrivial solution only if the determinant of the coefficient
matrix is zero.



This means that we have to find the eigenvalues of the matrix







2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2







If you have a QR program of linear algebra you can use it to find the eigenvalues.

Also, Matlab, Octave etc. have functions that evaluate the eigenvalues.



In the example we get

octave:4> l=eig(A)
l =

0.38197
1.38197
2.61803
3.61803

k=sqrt(l/0.04)
k =

3.09
5.88
8.09
9.51

This is not very accurate, since the values should be multiples of π. To improve the accu-
racy, a shorter step length h is needed


