
Optimization

Optimization means finding the minimum value of a function.

We have to find the minimum of a function

f(x),x = (x1, . . . , xN).

The function f is called the objective function.

Very many problems can be expressed as optimization problems:

1 Solving an equation f(x) = 0. The root is also the minimum of the function |f |.
Since this is a function with a lower bound, it has at least an infimum, even if the
original equation has no solution. Particularly a set of nonlinear equations may be
difficult to solve, in which case it can be handled as an optimization problem.

2 Least squares fit is found by minimizing the residual. In nonlinear cases there is no
analytical solution, and the minimum has to be found directly by optimization. The
form of the function has no real effect on the complexity of the problem.

3 If the criterion is something else than least squares, optimization of the residual is
usually the only possible method.

4 Solution of regularized problems. The regularization parameter can be one of the
variables to be determined.

5 Combinatorial problems (like the travelling salesman problem). Some may be NP
complete: the time needed for the solution proportional to 2n or n!.

If there are no additional requirements, the problem is unconstrained.

In a constrained problem the solution must also satisfy given constraints that can be
- inequalities: g(x) ≤ 0
- equations: h(x) = 0.

If there are several variables and the method employs derivatives, we may need the Hes-
sian formed from the second derivatives:

H(x) =









∂2f(x)
∂x2

1

· · · ∂2f(x)
∂x1∂xn

...
...

∂2f(x)
∂x1∂xn

· · · ∂2f(x)
∂x2

n









.

If the matrix is positive/negative definite the point is a local minimum/maximum.

Local optimization

1. Derivatives of the objective function are known. E.g. conjugate gradient methods.

2. Derivatives are not known or difficult to calculate. E.g. polytope method.

Global optimization

There are no absolutely reliable algorithms.

- Find many local optima by starting from different points.

- Genetic algorithms.

- Simulated annealing.

Forking method

Onedimensional case, derivative is not known.

The funkction is known at three points a < b < c such that f(b) < f(a) and f(b) < f(c).

Select a point x e.g. in the interval (b, c). If f(x) < f(b), the new interval will be (b, c),
otherwise (a, x).

Repeat the same operation until f(x) decreases no more.

a b c

x

At the minimum f ′(x) = 0; thus the change of f is at most of the second order. Itera-
tion can be terminated when the length of the interval is of the order

√
ǫ, where ǫ is the

machine constant. Smaller changes in x will not affect the value of the function.

Golden section rule: the middle point is chosen so that

b − a

c − a
=

3 −
√

5

2
= 0.38197.

The next point is chosen in the longer subinterval so that

x − b

c − b
= 0.38197.

Onedimensional case, derivative is known

Assume again that a < b < c and f(b) < f(a) and f(b) < f(c).

Find f ′(b). If f ′(b) > 0, the next point is chosen in the interval (a, b), otherwise in (b, c).

When the derivative has been calculated at two points, we can use e.g. the secant
method to find the next point, where the derivative should be zero. If this point is out-
side the interval, e.g. the midpoint of the interval can be taken as the new point.

N-dimensional case

Proceed in some direction as long as the objective function decreases, and then change
the direction. This line search is repeated until no smaller values are found.

At each step a onedimensional optimization problem is solved. Advance in a given direc-
tion ends, when the gradient of the objective function has no nonzero component in that
direction.

The direction can be chosen in different ways.

1. Proceed in the direction of coordinate axes only; change the coordinates x1, . . . , xN , x1, . . .

alternatively. Often inefficient.

2. Proceed in the direction of the steepest descent (i.e the gradient of the objective func-
tion). After each line search turn 90◦. This may not lead very directly towards the mini-
mum.

3. Try to choose the next direction by taking into account the previous directions.

Conjugate gradient method

Let x be the current point with respect to the location p of the best minimum found this
far. then

f(x) ≈ f(p) +
∑

i

∂f

∂xi

xi +
1

2

∑

i,j

∂2f

∂xi∂xj

xixj

= c + b · x +
1

2
x · A · x,

where b is the gradient of the function f at p and A the Hessian at p. Differentiating
this we get an expression for the gradient (at x)

∇f = A · x + b.

When we move from x in the direction of v, the change of the gradient is A · v.

Assume that the previous step was taken in the direction u. To avoid losing this advan-
tage the gradient must pe perpendicular to u also after the step v:

u · A · v = 0.

Such directions u and v are called conjugates.

1. Choose an initial value x1.

2. Repeat the following, k = 1, 2, . . ., until the norm ‖ gk ‖ is sufficiently small:

- gk = ∇f(xk).

- if k = 1, set β1 = 0, s0 = 0; otherwise

βk =
gk · gk

gk−1 · gk−1

- sk = −gk + βksk−1.

- use line search to find a point xk+1 = xk + λksk. So we proceed in the direction of
sk until a minimum is found.

Polytope method

Nelder–Mead polytope method; called also a simplex method (which is quite different
from the simplex method of linear optimization problems). Derivatives of the objective
function are not needed.

The simplex of an N -dimensional space is a polygon with N + 1 apices, x1, . . ., xN+1.
Denote fi = f(xi), fl = minfi, fh = maxfi.

The centre of gravity of the face opposite the worst apex

xc =
1

n

∑

i 6=h

xi.

Reflection coefficient α = 1, reduction coefficient β = 0.5, expansion coefficient γ = 2.

Four kinds of operations are used to transform the simplex:

1. Reflect the worst apex w.r.t the centre of gravity of the opposite face:

xr = (1 + α)xc − αxh.

2. Expand the simplex:
xe = (1 − γ)xc + γxr.

3. Shrink the simplex by moving one apex:

xs = (1 − β)xc + γxh.

4. Shrink the simplex by moving one face.

program amoeba
! Nelder-Mead polytope or simplex method
! adapted from a C program in Numerical recipes
implicit none
integer, parameter :: NMAX = 1000, & ! max nr of steps

ndim = 2, & ! nr of dimensions
mpts = 3 ! nr of apices of the simp,lex

real, parameter :: FTOL = 0.001, & ! final tolerance
ALPHA = 1.0, & ! reflection factor
BETA = 0.5, & ! shrinking factor
GAMMA = 2.0 ! expansion factor

integer i,j,ilo,ihi,inhi, nfunk
real ytry, ysave, sum, rtol, psum(ndim), &

p(ndim+1, ndim), &
y(ndim+1)

! apices of the initial simplex
p(1,:) = (/ 0.0, 0.0 /)
p(2,:) = (/ 0.0, 1.0 /)
p(3,:) = (/ 1.0, 0.0 /)

! function values at the apices
do i=1,3
y(i) = funk(p(i,:))

end do

! sums of coordinates; the centre of gravity of the
! face opposite of apex i is (psum-p(i))/ndim
do j=1,ndim
sum=0.0
do i=1,mpts
sum = sum+p(i,j)

end do
psum(j) = sum

end do
nfunk=0

main: do
! find the best (ilo), worst (ihi) and
! second worst (inhi) apex
ilo=1
if (y(1) > y(2)) then
inhi=2; ihi=1

else
inhi=1; ihi=2

end if
do i=1,mpts
if (y(i) < y(ilo)) ilo=i
if (y(i) > y(ihi)) then
inhi=ihi; ihi=i

else if (y(i) > y(inhi)) then
if (i /= ihi) inhi=i

end if
end do

! if the worst and best almost same the minimum is found
rtol=2.0*abs(y(ihi)-y(ilo)) / (abs(y(ihi))+abs(y(ilo)))
if (rtol < FTOL) then

write(6,’("rtol=",f10.5)’) rtol
write(6,’("nfunk=",i5)’) nfunk
exit main

end if
! stop if too many iterations
if (nfunk >= NMAX) then

write(6,’("nfunk=",i5)’) nfunk
exit main

end if

! reflection
ytry=amotry(-ALPHA)

! if the result improved, move the new apex even further
if (ytry <= y(ilo)) then
ytry=amotry(GAMMA)

else if (ytry >= y(inhi)) then
! the new point is worst than the second worst;
! shrink the simplex
ysave=y(ihi)
ytry=amotry(BETA)
if (ytry >= ysave) then
! still too big; shrink the simplex w.r.t the best point
do i=1,mpts
if (i /= ilo) then
do j=1,ndim
psum(j)=0.5*(p(i,j)+p(ilo,j))
p(i,j)=psum(j)

end do
y(i)=funk(psum)

end if

end do
nfunk = nfunk+ndim
! update sums of coordinates
do j=1,ndim
sum=0.0
do i=1,mpts
sum = sum+p(i,j)

end do
psum(j) = sum

end do
end if

end if
end do main

! print the points and corresponding function values;
! they should be almost equal since the simplex has
! shrunk to a small neighbourhood of the optimum
write(*,*) p(1,:), y(1)
write(*,*) p(2,:), y(2)
write(*,*) p(3,:), y(3)

contains

! objective function
real function funk(p)
implicit none
real p(ndim)
funk=(p(1)-3.0)**2+(p(2)-2.0)**2+1.0

end function

! modify the simplex
! the worst apex is reflected w.r.t. the opposite face
! and the distance is multiplied by fac
real function amotry(fac)
implicit none
real fac, fac2
integer j
real fac1, ytry, ptry(ndim)
fac1=(1.0-fac)/ndim
fac2=fac-(1-fac)/ndim
do j=1,ndim
ptry(j)=psum(j)*fac1+p(ihi,j)*fac2

end do
ytry=funk(ptry)
nfunk = nfunk+1
if (ytry < y(ihi)) then
y(ihi)=ytry
do j=1,ndim
psum(j) = psum(j)+ptry(j)-p(ihi,j)
p(ihi,j)=ptry(j)

end do

end if
amotry=ytry

end function
end program

rtol= 0.00068
nfunk= 31
3.009915 2.024210 1.000684
2.985695 2.014316 1.000410
3.000000 2.000000 1.000000

program amotest
use amoeba
implicit none
interface
real function funk(p, ndim)
integer, intent(in) :: ndim
real, dimension(ndim) :: p

end function
end interface

integer, parameter :: ndim = 2 ! dimension of the space
real p(ndim+1, ndim), &

y(ndim+1)

! initial simplex
p(1,:) = (/ 0.0, 0.0 /)
...
call simplex(funk, 2, p, y)
write(*,*) p(1,:), y(1)
...

end program

real function funk(p, ndim)
! L_infty residual
implicit none
integer, intent(in) :: ndim
real, dimension(ndim) :: p
integer, parameter :: ndata=6
real, dimension(ndata) :: &

xx = (/ 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 /), &
yy = (/ 0.5, 1.0, 0.5, 0.2, 4.0, 5.0 /)

integer i
real s

s=max(abs(yy-p(2)-p(1)*xx))

funk=s
end function

rtol= 0.00094
nfunk= 44
1.001739 -1.402117 1.403100
0.9989247 -1.397929 1.403306
0.9990266 -1.392659 1.404421

Constraints

The solution vector must be updated in such a way that the constraints are always satis-
fied.

Programs for unconstrained problems can be used to solve constrained problems, if the
constraints are replaced by penalty or barrier functions.

An extra term is added to the function to be optimized; this term is very big outside the
allowed region. If we are optmizing f with the constraint g(x) ≤ 0, the objective function
could be

f(x) + smax{0, g(x)},

where the constant s is a penalty parameter (the fine paid for crossing the boundary).

A barrier function is a function that will grow beyond all limits when we approach the
boundary of the allowed region.

Global optimization

The objective function may have many local minima. A minimum can be very narrow.
Therefore, no method can guarantee that the global minimum will be found.

Take sufficiently many initial values and proceed by local optimization. One of the local
minima may be the gloabal minimum.

Particularly in laborious combinatorial problems genetic algorithms and simulated an-
nealing may be useful. They depend on the specific problem, and therefore we can here
give only some general principles.

Genetic algorithms

Mimic evolutionary process.

- Create a set of solution vectors, the initial population.

- Interbreed elements of the population and generate random mutations.

- The best solutions are taken as the new population.

- Repeat this process until the result will not improve any further.

Due to the mutations the solution will not get stuck in the first local minimum.

Simulated annealing

Metropolis (1953).

Analogy: when a liquid is cooled sufficiently slowly, it will freeze to a regular crystal latt-
tice having minimum energy.

The objective function corresponds to the energy of the system. The configuration is
modified randomly. A temperature dependent probability is used to choose a new con-
figuration.

When the temperature is high, even transitions to worse (higher energy) states are ac-
cepted with a moderate probability. This tends to prevent getting stuck in local minima.

When the temperature decreases, the probability for accepting a worse configuration will
also decrease.

Suitable applications: e.g. combinatorial problems with no known fast solution methods,
like the travelling salesman problem.

The method can usually find a reasonably good solution, but cannot guarantee its opti-
mality.

