
Time series

In statistics a time series usually means a sequence of observations equally spaced in
time.

A time series is wide sense stationary (WSS), if the expectation is independent of the
choice of the origin:

E(t) = E(t+ τ).

A time series is strict sense stationary (SSS), if the probability distribution of the quan-
tity being measured is independent of the choice of the origin.



Analysis of a time series usually consists of the following basic steps:

- Smoothing or other filtering of the observations.

- Removal of the trend or slow variations. The trend can be described e.g. by a
straight line or a higher degree polynomial.

- Finding periodic variations. In statistics the variation is often seasonal, or has some
other known period.

- Predicting future values and estimating their probability distribution.



Smoothing the data

The simplest method: replace observed values by weighted means

gi = αfi + (1− α)gi−1,

where fi is the next observed value, gi−1 the latest already transformed value and α a
constant 0 < α < 1.

The closer to unity α is, the more closely the resulting curve will follow the original one.
When the value is reduced, the curve will become smoother, but at the same time the
amplitudi is decreased and there is a phase shift in the variations.



The method works well with real-time applications, since only values that have already
been observed are used for smoothing.

Another method is the moving average

gi =

K
∑

k=−K

wkfi+k,

where the sum of the weights is
∑

wk = 1.

This has no effect on the phase. To obtain as much smoothing as with the previous
method, usually more points are needed. The original values cannot be overwritten by
the new ones.

Since both previous and future values are needed, not good for predicting.



The moving average can also be calculated using previous values only

gi =
2K+1
∑

k=0

wkfi−k,

which will again cause a phase shift.







Linear trend removed:



Periodic variation removed:



Regression and autoregression models

Systematic variation can be described by a model depending on time only. The model
can also be generalised to a form

f(t) =
∑

i

aiφi(t,x),

where the basis functions φi are arbitrary functions. In addition to time they can depend
on any other quantities x, too.

Arguments of the basis functions can be obtained from other time series. The model is
then called a regression model.

A regression model can be applied if the phenomena have a real causal relationship that
is not just statistical (cf. correlation of icecream sales and drowning accidents).



If a basis function depends on the value of another time series at the same instant of time
and we want to evaluate the function, we have to predict the evolution of the other time
series, too. (If the shopkeeper of an icecream kiosk wants to order a proper supply for
tomorrow, he should predict how many people will get drowned tomorrow.)

If the basis functions depend on the previous values of the function to be predicted, the
model is called an on autoregression model, e.g.

f(t+ 1) = 2f(t)− f(t− 1),

If the data is periodic with a period T , in the simplest case we could use a model

f(t+ 1) = f(t+ 1− T ).

If the systematic variation is not sinusoidal, it may be difficult to describe with a few
Fourier terms. But a prediction based on an autoregression model can always be found
in the same way independently on the form of the variation.



Period determination

Possible problems:

- In addition to the periodicity the data also contains some other variation.

- There are gaps in the data or the time covered by observations is short compared to
the actual period.

- The data contains several independent period, which in some cases may lead to er-
roneous results.

- The period is not constant bu changes with time.

- The phase is changing with time.

- Timing of the observations may cause apparent periods that are not inherent to
the phenomenon itself. For example, a variable star is observed a few hours at a time at
intervals of one sideral day.



Fourier transform

The Fourier transform gives the frequency components of the data. A maximum indicates
periodicity at the coresponding frequency. If the variation is sinusoidal, there is one max-
imum only. If the variations has a more complex shape, there will be spikes at frequencies
that are multiples of the basic frequancy.

If the data contains two or more nearly similar frequancies, the results may be erroneous.



Autocorrelaaion

Dependence between the current observation and the value observed k time steps later is
described by the autocorrelation

R(k) =
1

N − k − 1

N−k
∑

i=1

fifi+k,

where N is the number of observations. When this is calculated for different values of
the delay k, k = 1, . . . , N − 2, we get the autocorrelation function. This is a meaningful
concept only if the time series is at least wide sense stationary.

Before evaluating the autocorrelation the trend should be removed from the data.



Multiples of the period will show up in the autocorrelation function.

If the observed values consist of pure white noise, successive values are not correlated
at all. If the data varies with time, successive values are close to each others, and the
strongest correlation is found between successive (k = 1) points. Strong correlations cor-
responding to small values of k are not due to any periodicity. It is only the next local
maximum that is an indication of a periodic phenomenon.
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Structure functions

Autocorrelation is a measure for the dependence between the values x(t + τ) and x(t) in
terms of the expectation of their products. Instead of products, also the difference x(t +
τ)− x(t) can be used.

The first degree structure function is

D(τ) =
1

N

∑

(x(t+ τ)− x(t))
2
.

tai

D(τ) =
1

T

∫ T/2

−T/2

(x(t+ τ)− x(t))
2
dt.

Higher degree structure functions:

Dn(τ) =
1

T

∫ T/2

−T/2

(

n
∑

k=1

(−1)k
(n

k

)

x(t+ kτ)

)2

dt.



The second degree structure function is known as the Allan variance, used widely to de-
scribe the stability of the system.

It suffices to have stationary differences. The structure function van be determined even
if the autocorerlation function as a function of the delay is not meaningful.

The structure function can be determined even if the mean value and variance are not
well defined. Thus it can be applied more generally than the autocorrelation function.



Phasedispersion method

Compare values at a distance T from each others. If they are similar, a small value is
obtained for the dispersion measure

d(T ) =
1

S

∑

i

∑

j

w(ti, tj)|yi − yj |
2,

where
S =

∑

i

∑

j

w(ti, tj)

The function w is chosen in such a way that it is approximately zero except if the time
difference is close to the period or its multiple, i.e. w(ti, tj) is clearly positive only when
|ti − tj | ≈ kT , k = 0, 1, 2, . . .. When the dispersion d is plotted as a function of the period
T , we get a curve, whose minima correspond to the periods of the time series.



Unequally spaced data

Astronomical observations are not usually equally spaced.

If there are only a few missing points and the variations are small, the missing points can
be interpolated. Generally, this is not usually reasonable.

If the data contains long gaps, it may be necessary to analyze short and long timescales
separately using methods designed for equally spaced data. Density of observations can
to some extent be smoothed by dividing the observations into bins of suitable length and
replacing the data by mean values in each bin.

Autocorrelation function: (Edelson and Krolik, Ap. J., 333, 646, 1988). For each ob-
served time difference there is only one measurement, and the autocorrelation function
cannot be properly estimated. A possible solution is to form finite time classes.

Fourier transform; a classical article is: Deeming: Fourier analysis with unequally-spaced
data, Astrophysics and Space Science 36 137–158 (1975).



Power spectrum: Scargle, Ap.J., 263, 835, 1982; Lomb, Ap. Space Sci., 39, L147, 1976.

P (ω) =
1

2

(

[
∑

xi cos(ω(ti − t0))]
2

∑

cos2(ω(ti − t0))
+

[
∑

xi sin(ω(ti − t0))]
2

∑

sin2(ω(ti − t0))

)

,

where

t0 =
1

2ω
arctan

(∑

sin 2ωti
∑

cos 2ωti

)

.



program lomb
implicit none
integer, parameter :: n=100
real, parameter :: pi=3.141592654
real, dimension(n) :: t, x, noise, f, P
real :: w, k=4.0
integer i
read (*,*) w
call random_number(t)
call random_number(noise)
x=sin(k*2*pi*t)+w*noise
do i=1,n
f(i)=0.1*i
P(i)=period(t, x, n, f(i))
write(*,*) f(i),P(i)

end do
contains

real function period(t, x, n, f)
! Lombin periodogrammi taajuudella f
! t(1:n)=aika, x(1:n)=havaitut arvot
integer, intent(in) :: n



real, dimension(n), intent(in) :: t, x
real, intent(in) :: f
real, parameter :: pi=3.141592654
real s1, s2, s3, s4, mean, var, tau, omega
integer i

omega=2*pi*f
! x:n keskiarvo ja varianssi
mean = sum(x)/n
var= sum((x-mean)**2)/(n-1)
! tau
tau = sum(sin(2*omega*t))/sum(cos(2*omega*t))
tau = atan(tau)/(2*omega)
! P(omega)
s1 = sum((x-mean)*cos(omega*(t-tau)))
s2 = sum(cos(omega*(t-tau))**2)
s3 = sum((x-mean)*sin(omega*(t-tau)))
s4 = sum(sin(omega*(t-tau))**2)
period = (s1**2/s2 + s3**2/s4)/(2*var)

end function
end program
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