

Secondary fluctuations Clusters and SZ

Enn Saar

Tartu Observatoorium

Secondary fluctuationsClusters and SZ - p. 1/4

Property	Value
Mass	$10^{15} M_{\odot}$
Size	1.5 Mpc
Rms velocity	1000 km/sec
Crossing time	1 Gyr
Temperature	$5\cdot 10^4 {\rm K}$
$k_B T$	4 keV

Clusters: example

Coma cluster

Coma cluster again

Coma cluster again, by Chandra

Clusters: simulations

A dark matter cluster

A better dark matter cluster

Zooming in

Clusters: Mass function

Theoretical mass functions: PS, Sheth-Tormen.

Clusters: Press-Schechter

• Take a filter W(r; M) with a typical R(M); $M = \overline{\rho}V_W(R)$.

- Take $\delta = \frac{\rho \bar{\rho}}{\bar{\rho}} > \delta_c$; e.g., $\delta_c = 1.686$ (normalized to the present).
- Assume Gaussianity;

$$P_G(\delta \le \delta_c | R) = \frac{1}{2} \left[1 - \operatorname{erf}\left(\frac{\delta_c}{\sqrt{2}\sigma(R)}\right) \right]$$

Introduce the fudge factor, write

$$F(M) = 1 - \operatorname{erf}(\nu/\sqrt{2}), \qquad \nu = \delta_c/\sigma(M),$$

Define the differential mass function n(M):

$$Mn(M) = \bar{\rho} \Big| \frac{dF}{dM} \Big|.$$

$$n(M) = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M^2} \nu \left| \frac{d \ln \sigma(M)}{d \ln M} \right| e^{-\nu^2/2}.$$

Model dependence: $\bar{\rho} = 3H_0^2\Omega_M/(8\pi G)$,

Power normalization:

$$\sigma^{2}(M) = 4\pi \int_{0}^{\infty} |\widetilde{W}(k;M)|^{2} P(k) \frac{k^{2} dk}{(2\pi)^{3}}$$

Clusters: evolution

Evolution of the cluster number density; upper panel – a

 Λ CDM-cosmology, lower panel – the SCDM cosmology.

Evolution:

$$\delta_c(t) = \frac{D_1(0)}{D_1(t)} \delta_c;$$

$D_1(t)$ – growing mode:

- $\Omega_M = 1, \quad D_1(t) \sim t^{2/3};$
- $\Omega_M = 0, \qquad D_1(t) = \text{const};$

- Cluster properties check:
 - cosmological parameters
 - perturbation spectrum
 - Gaussianity
- References:
 - Press W.H. & Schechter P., Ap. J. 187, 425, 1974.
 - Sheth R.K. & Tormen G., MNRAS 308, 119, 1999 (astro-ph/9901122).

Sunyaev-Zeldovich effect

Scattering of CMB photons off high energy electrons (inverse Compton scattering).

Scattering geometry.

$$\epsilon' = \frac{\epsilon}{1 + (\epsilon/m_e c^2)(1 - \cos \phi_{12})}$$

Derive:

- 1. Probability of scattering from $\theta \Rightarrow p(\theta)d\theta$;
- 2. Probability of scattering to $\theta' \Rightarrow \phi(\theta'; \theta) d\theta';$
- 3. Probability that a single scattering causes a frequency shift $s = \log(\nu'/\nu) \Rightarrow P(s,\beta)$ ($v = \beta c$; integrate over distributions 1 and 2)
- 4. Average over electron distribution $\beta \Rightarrow P_1(s)$ (single scattering).

 $P_1(s)$: left panel – $k_BT_e = 5.1$ keV, right panel – $k_BT_e = 15.3$ keV.

5 Average over incident (blackbody) spectrum $I_0(\nu)$:

$$\Delta I(\nu) = \frac{2h}{c^2} \tau_e \int_{-\infty}^{\infty} P_1(s) \, ds \left(\frac{\nu_0^3}{e^{h\nu_0/k_B T_{CMB}} - 1} - \frac{\nu^3}{e^{h\nu/k_B T_{CMB}} - 1} \right);$$

here

$$s = \log(\nu/\nu_0).$$

SZ effect: left panel – $k_B T_e = 5.1$ keV, right panel – $k_B T_e = 15.3$ keV.

Kompaneets equation

Nonrelativistic diffusion approximation to the kinetic equation:

$$\frac{\partial n}{\partial y} = \frac{1}{x^2} \frac{\partial}{\partial x} x^4 \left(\frac{\partial n}{\partial x} + n + n^2 \right),$$

- $x = \frac{h\nu}{k_B T_e}$ dimensionless frequency,
- $y = \frac{k_B T_e}{m_e c^2} \frac{ct}{\lambda_e}$ dimensionless time spent among electrons,
- $\lambda_e = \frac{1}{n_e \sigma_T}$ mean scattering free path,

•
$$\sigma_T = \frac{8\pi}{3} \frac{\alpha^2}{m_e^2}$$
 – Thomson scattering cross section.

Derivation in Peebles (1993), pages 603-608.

Comptonization parameter:

$$y = \int n_e \frac{k_B T_e}{m_e c^2} \sigma_T \, dl$$

If $x\ll 1,$ Kompaneets reduces to

$$\frac{\partial n}{\partial y} = \frac{1}{x^2} \frac{\partial}{\partial x} x^4 \frac{\partial n}{\partial x}.$$

If $y \ll 1$, write

$$\frac{\partial n}{\partial y} = \frac{\Delta n}{y}$$

Comptonization parameter:

$$y = \int n_e \frac{k_B T_e}{m_e c^2} \sigma_T \, dl$$

If $x\ll 1,$ Kompaneets reduces to

$$\frac{\partial n}{\partial y} = \frac{1}{x^2} \frac{\partial}{\partial x} x^4 \frac{\partial n}{\partial x} = \frac{1}{x^2} \frac{\partial}{\partial x} x^4 \frac{\partial n}{\partial x}, \quad x = \frac{h\nu}{k_B T_{CMB}}$$

If $y \ll 1$, write

$$\frac{\partial n}{\partial y} = \frac{\Delta n}{y}$$

Comptonization parameter:

$$y = \int n_e \frac{k_B T_e}{m_e c^2} \sigma_T \, dl$$

If $x\ll 1,$ Kompaneets reduces to

$$\frac{\partial n}{\partial y} = \frac{1}{x^2} \frac{\partial}{\partial x} x^4 \frac{\partial n}{\partial x} = \frac{1}{x^2} \frac{\partial}{\partial x} x^4 \frac{\partial n}{\partial x}, \quad x = \frac{h\nu}{k_B T_{CMB}}$$

Change colour: substitute \boldsymbol{x} by \boldsymbol{x} .

If $y \ll 1$, write

$$\frac{\partial n}{\partial y} = \frac{\Delta n}{y}$$

The CMB spectrum is thermal:

$$n(\nu) = \left(e^{h\nu/k_B T_{CMB}} - 1\right)^{-1}, \quad n(x) = \left(e^x - 1\right)^{-1}.$$

Substitute and get:

$$\Delta n = \frac{xe^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right) y I_0,$$
$$I_0 = 2(k_B T_{CMB})^3 / (hc^2),$$

Change of n leads to change in specific intensity:

$$I(\nu) = \frac{2h\nu^3}{c^2}n(\nu),$$

$$\Delta I = g(x)yI_0,$$

$$g(x) = \frac{x^4 e^x}{(e^x - 1)^2} \left(x \frac{e^x + 1}{e^x - 1} - 4 \right),$$

Blackbody:

$$I(\nu) = \frac{2h\nu^3}{c^2} \left(e^{h\nu/k_B T_{CMB}} - 1 \right)^{-1},$$

Rayleigh-Jeans limit:

$$I(\nu) = 2k_B T_{CMB} \nu^2 / c^2,$$

define brightness temperature T_{RJ} :

$$T_{RJ}(\nu) = \frac{c^2 I(\nu)}{2k_B \nu^2}.$$

SZ change in brightness temperature:

$$\frac{\Delta T_{RJ}}{T_{RJ}} = f(x)y,$$

$$f(x) = \left(x\frac{e^x+1}{e^x-1}-4\right)$$

Kompaneets approximation:

- simple spectrum
- \checkmark does not depend on T_e
- \checkmark amplitude depends only on y

Kinetic SZ:

$$\Delta I = -\beta \tau_e I_0 \frac{x^4 e^x}{(e^x - 1)^2},$$
$$\Delta T_{RJ} = -\beta \tau_e T_{CMB} \frac{x^2 e^x}{(e^x - 1)^2},$$

$$\frac{\Delta T_{kin}}{\Delta T_{th}} = \frac{1}{2} \frac{v_r}{c} \left(\frac{k_B T_e}{m_e c^2}\right)^{-1} = 0.085 (v_r/1000 \text{ km/s}) (k_b T_e/10 keV)^{-1}.$$

SZE for an hypothetical $10^{18} M_{\odot}$ cluster.

Thermal and kinetic SZ (in specific intensity)

Thermal and kinetic SZ (in RJ temperature)

References:

- P.J.E. Peebles, Principles of Physical Cosmology, Princeton University Press, 1993 (pp. 581–608). Derives Kompaneets in 603–608.
- M. Birkinshaw, Phys. Reports 310, 97, 1999 (astro-ph/9808050).

SZ: Observations

Observed SZ clusters

SZ and X from clusters

Applications: H_0

 $\Delta T_{SZ} \sim \int n_e T_e \, d\ell, \qquad d\ell = D_A d\theta;$

 $S_x \sim \int n_e^2 \Lambda_X.$

$$D_A \approx \frac{1}{\theta_c} \frac{(\Delta T_c)^2 \Lambda_{Xc}}{S_{x_c} T_{ec}^2}$$

 $D_A \Rightarrow H_0.$

SZ:

) X:

SZ Effect/X-ray H_0 Measurements

Cluster	Redshift	$H_0~({ m km~s^{-1}~Mpc^{-1}})$	H_0 Reference	
A2256	0.0581	68^{+21}_{-18}	Myers <i>et al.</i> 1997	
A478	0.0881	30^{+17}_{-13}	Myers <i>et al.</i> 1997	
A2142	0.0899	46^{+41}_{-28}	Myers <i>et al.</i> 1997	
A1413	0.143	44^{+20}_{-15}	Saunders 1996	
A2218	0.171	59 ± 23	Birkinshaw & Hughes 1994	
A2218	0.171	34^{+18}_{-16}	Jones 1995	
A665	0.182	46 ± 16	Hughes & Birkinshaw 1998b	
A665	0.182	48^{+19}_{-16}	Cooray <i>et al.</i> 1998c	
A2163	0.201	58^{+39}_{-22}	Holzapfel <i>et al.</i> 1997	
Cl0016+16	0.5455	47^{+23}_{-15}	Hughes & Birkinshaw 1998a	

Angular distances of SZ clusters (β -model, soon MCMC & mapping).

Applications: v_r

Fitting of kinetic and thermal SZ spectra for A2163.

Kinetic SZ effect in clusters

Cluster	Date	Δ RA (arcsec)	$y_0 \times 10^4$	v_{pec} (km s $^{-1}$)
A2261	Mar99	$1.3^{+11.0}_{-11.0}$	$7.58^{+2.24}_{-2.28}$	-1400^{+1725}_{-1050}
A2390	Nov00	$-2.5^{+14.3}_{-14.3}$	$1.67^{+1.03}_{-0.72}$	$+1950^{+6275}_{-2675}$
Zw3146	Nov00	$13.9^{+23.9}_{-22.9}$	$3.60^{+1.79}_{-2.61}$	-650^{+3550}_{-1875}
A1835	Apr96	$-22.5^{+12.0}_{-13.0}$	$7.54^{+1.61}_{-1.61}$	-225^{+1650}_{-1225}
Cl0016	Nov96	$-2.9^{+25.0}_{-26.9}$	$2.98^{+1.32}_{-2.59}$	-4050^{+2900}_{-1775}
MS0451	Nov96	$-1.5^{+16.0}_{-16.0}$	$2.09^{+1.87}_{-0.88}$	$+350^{+6625}_{-2925}$
	Nov97	$22.0^{+9.0}_{-9.0}$	$2.15_{-0.73}^{+0.72}$	$+1650^{+3775}_{-2125}$
	Nov00	$-25.0^{+17.0}_{-17.0}$	$3.06^{+0.83}_{-0.83}$	-300^{+1950}_{-1250}
	Combined Fit		$2.80^{+0.51}_{-0.52}$	$+750^{+1500}_{-1125}$

B.A. Benson et al., Ap. J. 592, 674, 2003, astro-ph/0303510, state-of-the-art SZ kinetic effect measurements.

Cluster counts

Predicted SZ cluster counts

Confusion noise

SZ secondary anisotropies

Other applications

- SZ from the Andromeda halo
- SZ from first stars
- SZ and Planck

Look also: J.E. Carlstrom, G.P. Holder, E.D. Reese, ARAA 40, 643, 2002 (astro-ph/0208192).